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1. Basics and notation

Unless otherwise speci�ed, all rings involved are commutative Noetherian with identity,
and all ring homomorphisms are unitary.
Recall that a local ring (R,m) ring is said to have equal characteristic (or to be equi-

characteristic) if char(R) = char(R/m). In these notes, most of the time we will consider
rings of equal characteristic p > 0 where p is, of course, a prime integer.

Remark 1.1. Since char(R/m) always divides char(R), if the latter is a prime, then R is nec-
essarily equi-characteristic. In fact, if R is not necessarily local and has prime characteristic
p > 0, then every localization of R must have equal characteristic p. Moreover, the condition
that char(R) is a prime p is equivalent to the fact that R contains a �eld of characteristic
p. In fact, char(R) = p means that the natural map Z → R sending 1Z → 1R has kernel
pZ. Therefore R contains the �nite �eld Z/pZ = Fp. Conversely, if R contains a �eld ` of
characteristic p > 0, then char(R) = p is readily seen to be forced.

1.1. The Frobenius map. Let R be a ring of prime characteristic p > 0. The Frobenius
endomorphism on R is the map

F : R // R

r // rp

Lemma 1.2. The Frobenius map is a ring homomorphism.

Proof. Let r, s ∈ R. Since R is commutative, it is clear that F (rs) = (rs)p = rpsp =
F (r)F (s). The key point is that it is additive:

F (r + s) = (r + s)p =

p∑
i=0

(
p

i

)
risp−i = rp + sp = F (r) + F (s),

where the third equality follows from the fact that the integer
(
p
i

)
is divisible by p for all

0 < i < p, and p = 0 in R. �

Here are some examples.

Examples 1.3. (1) Let R = Fp be the �eld with p elements. Then F is the identity. In
particular, it is an isomorphism.

(2) Let R = Fp[t], or R = Fp(t) = Frac(Fp[t]). Then F is injective but not surjective;
for instance, t is not in the image. We say that a ring is perfect if F is a surjective
homomorphism.

Exercise 1.4. Prove that, if R is a Noetherian perfect ring, then R is a direct product of
�elds.

Regarding injectivity, instead, the following is easy to prove.

Proposition 1.5. Let R be a ring of prime characteristic p > 0. Then R is reduced if and
only if F : R→ R is injective.

Proof. Assume R is reduced. If F (r) = rp = 0, then r = 0. So F is injective. Conversely,
assume that F is injective. Let r ∈ R and assume that rN = 0 for some N ∈ N∗. Let
e = inf{e′ ∈ N | rpe

′
= 0}, which is �nite by assumption. If e > 1, then set s = rp

e−1
. By
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de�nition of e, we have s 6= 0, but F (s) = rp
e

= 0, contradicting our assumptions. Therefore
e = 0, which means that rp

0
= r = 0. This completes the proof. �

We now de�ne Frobenius powers of an ideal I ⊆ R:

I [p] = (xp | x ∈ I).

Observe that I [p] = F (I)R, where F is the Frobenius map. For this reason, if I = (f1, . . . , ft),
one has I [p] = (fp1 , . . . , f

p
t ).

Exercise 1.6. Assume that R contains Q. Let I ⊆ R be an ideal, and let n ∈ N∗. De�ne
I [n] = (xn | x ∈ I). Prove that I [n] = In, the ordinary power of I.

Notation 1.7. For a ring R of prime characteristic p > 0, we use q, q′, q′′, . . . to denote
powers pe, pe

′
, pe

′′
, . . . of p, for e, e′, e′′ ∈ N. For an ideal I, we then write I [q] for I [pe], etc.

1.2. Frobenius push-forward. Given any ring homomorphism f : R→ S, one can view S
as an R-module by restriction of scalars. In other words, given r ∈ R and s ∈ S, the action
r · s = f(r)s makes S into an R-module.
In the case of the Frobenius map F : R→ R, the action that makes R into an R-module

(via F ) can be confused with the standard action. For this reason, it is often convenient to
use di�erent notations for R as a source and as a target of F . If we let F∗(R) denote R when
viewed as a module over itself via Frobenius, and for r ∈ R we denote by F∗(r) its elements
(just to distinguish them from the scalars), then for r, s ∈ R we have

F∗(r) + F∗(s) = F∗(r + s) and r · F∗(s) = F∗(r
ps).

Observe that the natural map ϕ : R → F∗(R) which sends r 7→ F∗(r
p) is now R-linear. In

fact, for r, s ∈ R we have

ϕ(r + s) = F∗((r + s)p) = F∗(r
p + sp) = F∗(r

p) + F∗(s
p) = ϕ(r) + ϕ(s),

and
rϕ(s) = rF∗(s

p) = F∗(r
psp) = F∗((rs)

p) = ϕ(rs).

Remark 1.8. The same considerations can be carried out for the e-th iteration of Frobenius.
In this case, we will denote the restriction of scalars by F e

∗ (R), and the map R → F e
∗ (R)

sending r 7→ F e
∗ (r

pe) is now R-linear.

Now letM be any R-module. We let F∗(M) be the F∗(R)-module, with operations de�ned
as follows. For m1,m2 ∈M and r ∈ R:

F∗(m1) + F∗(m2) = F∗(m1 +m2) and F∗(r) · F∗(m1) = F∗(rm1).

This action is not very interesting: in fact, if we recall that R and F∗(R) are actually the
same ring, and we identify them, then M and F∗(M) become the same module.
However, every F∗(R)-module is also an R-module. In this case, the action is much more

interesting: r · F∗(m) = F∗(r
pm) for all r ∈ R and m ∈M . We will use this action over and

over again.
Given anR-linear map f : M → N , there is an induced F∗(R)-linear map F∗(f) : F∗(M)→

F∗(N), de�ned as F∗(f)(F∗(m)) = F∗(f(m)) for all m ∈ M . In particular, this is also an
R-linear map.
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Remark 1.9. An alternative point of view, which is only fully justi�ed when R is reduced, is
that of viewing F∗(R) as the ring of p-th roots of elements in R. More generally, given an
R-module M , we let M1/p be the set of elements m1/p, for m ∈M . Under this point of view
we have that the map R → R1/p sending r 7→ r = (rp)1/p is R-linear, and every M1/p is an
R1/p-module, as well as an R-module.

Proposition 1.10. Let R be a ring of characteristic p > 0, and e be a positive integer.

(1) The functor F e
∗ (−) from the category of R-modules to the category of F e

∗ (R)-modules
is exact.

(2) IfW ⊆ R is a multiplicatively closed system, then the RW -linear map ψ : (F e
∗ (R))W →

F e
∗ (RW ) de�ned as F e∗ (r)

w
7→ F e

∗
(

r
wpe

)
is an isomorphism.

Proof. Part (1) is clear, since if 0→ A→ B → C → 0 is any exact sequence of R-modules,
then both the modules and the maps in the sequence 0 → F e

∗ (A) → F e
∗ (B) → F e

∗ (C) → 0
are unchanged (what changes is the R-module structure). In particular, kernels and images
are unchanged, and the sequence is still exact.
For (2): the map ψ is clearly additive. Given s/u ∈ RW , letting q = pe we have

ψ

(
s

u
· F

e
∗ (r)

w

)
= ψ

(
F e
∗ (s

qr)

uw

)
= F e

∗

(
sqr

uqwq

)
=
s

u
F e
∗

( r

wq

)
=
s

u
· ψ
(
F e
∗ (r)

w

)
.

Now consider the map ϕ : F e
∗ (RW )→ (F e

∗ (R))W de�ned as F e
∗
(
r
w

)
7→ F e∗ (rwq−1)

w
. It is clearly

additive, and for s/u ∈ RW we have

ϕ
( s
u
· F e
∗

( r
w

))
= ϕ

(
F e
∗

(
sqr

uqw

))
=
F e
∗ (s

qruq(q−1)wq−1)

uqw

=
suq−1F e

∗ (rw
q−1)

uqw
=
s

u
· F

e
∗ (rw

q−1)

w
=
s

u
· ϕ
(
F e
∗

( r
w

))
.

Thus both ψ and ϕ are RW -linear. It is easy to check that they are each other's inverse, and
therefore ψ is an isomorphism.

�

Remark 1.11. From the point of view of pe-th roots, the previous proposition simply states
the more intuitive fact that the functor (−)1/pe is exact, and that taking pe-th roots commutes
with localization.

1.3. A quick reminder of integral closure.

De�nition 1.12. Let I ⊆ R be an ideal. An element x ∈ R is said to be integral over I if
there exists N > 0 and elements ij ∈ Ij such that

xN + i1x
N−1 + . . .+ iN = 0.

We denote by I the set of all elements that are integral over I.

The following are some properties that are almost immediate to check. We refer to [HS06]
if the reader is interested in seeing a proof.

Proposition 1.13. Let I ⊆ R be an ideal, and x ∈ R be an element.

(1) I is an ideal, and I ⊆ I ⊆
√
I.
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(2) x ∈ I if and only if the image of x in R/P belongs to IR/P for every minimal prime
P of R.

(3) If Rred = R/
√

0, then IRred = IRred.
(4) x ∈ I if and only if there exists N > 0 such that xN+r ∈ Ir for all r > 1.
(5) If W is a multiplicatively closed system, then IRW = IRW .

For our purposes, it will be helpful to give a di�erent characterization of integral elements.
The full proof of the characterization can be found in [HS06], and relies on the concept of
valuation. Here, we will only prove one implication.

Notation 1.14. For a ring R, let us denote by R◦ the set of elements in R that do not
belong to any minimal prime. For example, if R is a domain, then R◦ = Rr {0}.

Proposition 1.15. Let I ⊆ R be an ideal, and x ∈ R be an element. Then x ∈ I if and
only if there exists c ∈ R◦ such that cxn ∈ In for in�nitely many n� 0.

Proof. Let Min(R) = {P1, . . . , Ps}. First assume that x ∈ I. By Proposition 1.13 (4) we
have that xN+r ∈ Ir(I+(x))N ⊆ Ir for all r > 1. Assume that I is contained in P1∩ . . .∩Pk,
and I is not contained in Pj for j = k + 1, . . . , s. By prime avoidance we can choose
d ∈ INr(Pk+1∪. . .∪Ps). Moreover, let t� 0 be such that (

√
0)t = (P1∩. . .∩Ps)t = (0), and

let e ∈ (Pk+1∩ . . .∩Ps)tr(P1∪ . . .∪Pk). Observe that, by our choices, e(P1∩ . . .∩Pk)t = (0).
Let c = d + e, and note that c ∈ R◦; in fact, if for instance c ∈ P1, then e = c − d ∈ P1,
because d ∈ IN ⊆ P1, and this contradicts our choice of e. On the other hand, if c ∈ Ps, then
d = c−e ∈ Ps, contradicting our choice of d. Finally, by what we have shown above, we have
that cxN+r ∈ cIr = (d+e)Ir ⊆ IN+r+eIr. For r > t we have that eIr ⊆ e(P1∩. . .∩Pk)t = (0),
and this shows that cxn ∈ In for all n� 0.
The converse relies on valuations. Assume that cxn ∈ In for all n � 0, and let P = Pj

be any minimal prime of R. Let V be a discrete valuation domain sitting between R/P and
Frac(R/P ), with associated value function v : V → Z. Note that cxn ∈ InV still holds for
in�nitely many n � 0, and therefore v(c) + nv(x) > nv(I). Since this holds for all n � 0,
one must have v(x) > v(I), that is, x ∈ IV . Since I =

⋂
V IV ∩R, the claim follows. �

1.4. Tight closure. Tight closure was introduced by Hochster and Huneke around 1990 as
a systematic tool to attack problems for rings of characteristic p > 0. Its de�nition can seem
quite technical and obscure at the beginning, but it is very natural, especially if compared
with the characterization of integral closure given in Proposition 1.15. We will make this
connection later in this subsection.

De�nition 1.16. Let R be a ring of prime characteristic p > 0, I ⊆ R be an ideal, and
x ∈ R be an element. We say that x belong to the tight closure of I if there exists c ∈ R◦
such that cxq ∈ I [q] for all q = pe � 0. We denote by I∗ the set of elements in R that belong
to the tight closure of I. We say that I is tightly closed if I = I∗.

Example 1.17. Let R = F3[x, y]/(x2 − y3). Then x ∈ (y)∗. In fact, choose c = x ∈ R◦; for
all e ∈ N∗ we have

x · x3e = (x2)
3e+1

2 = (y3)
3e+1

2 = y3e · y
3e+3

2 ∈ (y3e) = (y)[3e].

Some basic properties of tight closure:

Proposition 1.18. Let I ⊆ R be an ideal. Then:
7



(1) I∗ is an ideal.
(2) I ⊆ I∗.
(3) If I ⊆ J , then I∗ ⊆ J∗.
(4) (I∗)∗ = I∗.

Proof. (1) If x, y ∈ I∗, then there exist c, d ∈ R◦ such that cxq ∈ I [q] and dyq ∈ I [q] for
q = pe � 0. Observe that cd(x + y)q ∈ I [q] for q � 0, proving that x + y ∈ I∗. Similarly,
if x ∈ I∗ and r ∈ R, then cxq ∈ I [q] for q � 0, and it follows that c(rx)q = crqxq ∈ I [q] for
q � 0, so that rx ∈ I∗. (2) and (3) are equally straightforward.
(4) By (2), it su�ces to show one containment. Let x ∈ (I∗)∗. Then cxq ∈ (I∗)[q] for

q � 0. Let I∗ = (f1, . . . , ft). Then, there exist c1, . . . , ct ∈ R◦ such that cif
q
i ∈ I [q] for all

q � 0 (and we choose q � 0 that works for all elements here involved). Let d = c · c1 · · · ct,
and observe that d ∈ R◦. Then for some ri ∈ R and all q � 0 we have

dxq = c1 · · · ct

(∑
i

rif
q
i

)
=
∑
i

r′icif
q
i ∈ I [q],

and it follows that x ∈ I∗. �

Some more examples, to show the subtlety of the de�nition.

Examples 1.19. (1) Let R = Fp[x, y, z]/(x3 + y3 + z3), with p > 3. Then x2 ∈ (y, z)∗.
(2) Let R = Fp[x, y, z]/(x2 − y3 − z5). Then (y, z)∗ = (y, z). This can be tested by

showing that x /∈ (y, z)∗, because x generates the socle of R/(y, z).
(3) Let R = Fp[x, y, z]/(x2 − y5 − z7). This time, x ∈ (y, z)∗.

Proposition 1.18 shows that tight closure is indeed a closure operation.

Proposition 1.20. Let I ⊆ R be an ideal. Then:

(1)
√

0 ⊆ I∗ ⊆ I ⊆
√
I. Moreover, if I is a principal ideal, then I∗ = I.

(2) x ∈ I∗ if and only if the image of x in R/P belongs to the tight closure of (I +P )/P
for every minimal prime P of R.

(3) If R is reduced, or I has positive height, then x ∈ I∗ if and only if there exists c ∈ R◦
such that cxq ∈ I [q] for all q.

Proof. The inclusions of (1) are easy from the de�nitions and the previous discussion about
I. For the second claim, it su�ces to observe that I [q] = Iq if I is principal.
(2) If x ∈ I∗, then the same relation holds true when going modulo any minimal prime

P . Observe that c ∈ R◦ implies that the class of c in R/P is non-zero, hence c ∈ (R/P )◦.
For the converse, let P1, . . . , Ps be the minimal primes of R, and let x be such that xi ∈ I∗i ,
where the subscript i denotes the class of x and I in R/Pi. By assumption, there exist
ci ∈ (R/Pi)

◦ = R/Pi r {0} such that cix
q
i ∈ I

[q]
i for all q � 0. Lifting back to to R, we

can always assume that the lift c′i is in R
◦, by Prime Avoidance. Then c′ix

q ∈ I [q] + Pi for
all q � 0. For each i, by Prime Avoidance choose ti in all the minimal primes except Pi.
Let d =

∑
tici. Then dxq ∈ I [q] +

∑
tiPi ⊆ I [q] +

∏
i Pi ⊆ I [q] +

√
0. Choose q0 such that(√

0
)[q0]

= 0. Then cq0xqq0 ∈ I [qq0], and thus x ∈ I∗.
(3) Let I be an ideal, and x ∈ I∗. Fix c ∈ R◦ and q0 such that cxq ∈ I [q] for all q > q0.

First assume that ht(I) > 0. Then there exists d ∈ I that avoids all minimal primes of
R. In particular, dq0 ∈ R◦, and also dq0 ∈ I [q] for all q 6 q0. Setting e = cdq0 , we have
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that exq ∈ I [q] for all q. Now assume that R is reduced instead; by what we have already
proved, we may assume that ht(I) = 0. In other words, if (0) = P1 ∩ . . . ∩ Pt, where
the Pi's are the minimal primes of R, then Pi ∈ Ass(R/I) for some i (possibly more than
one). Assume that P1, . . . , Ps ∈ Ass(R/I), while Ps+1, . . . , Pt /∈ Ass(R/I). By (1), we have
that x ∈ I∗ ⊆

√
I ⊆ P1 ∩ . . . ∩ Ps, and x /∈

⋃t
j=s+1 Pj. By Prime Avoidance, we can �nd

d ∈ Ps+1 ∩ . . .∩Pt such that d /∈
⋃s
i=1 Pi. Observe that xd ∈

⋂t
i=1 Pi = (0). Again by Prime

Avoidance, we can �nd α ∈ I, with α /∈
⋃t
j=s+1 Pj; observe that α

q0 ∈ I [q0] r
⋃t
j=s+1 Pj. Let

e = cαq0 + d. Note that e ∈ R◦ by choice of α and d. Moreover, we have exq = αq0cxq ∈ I [q]

for all q, as desired. �

Remark 1.21. A di�erent way to express the condition that x ∈ I∗ is using Frobenius push-
forwards. To see this better �rst assume that R is reduced, so we may use the point of
view of p-th roots. Then cxq ∈ I [q] is equivalent, after taking q-th roots, to the condition
that c1/qx ∈ (I [q])1/q = IR1/q. More generally, using Frobenius push-forwards, we have that
x ∈ I∗ if and only if there exists c ∈ R◦ such that F e

∗ (c)x ∈ IF e
∗ (R) for all e� 0.

2. Kunz's Theorem and tight closure in regular rings

Using the last remark of the previous section (or Proposition 1.18 (2)), we can view the
condition of belonging to the tight closure of an ideal as a weakening of the membership
condition. In this sense, if an ideal is tightly closed, it is �easier� to show that an element
belongs to the tight closure, then to the ideal itself. So it makes sense to ask: when are ideals
tightly closed?
We start with an illustrative example.

Example 2.1. Let R = FpJx, yK, and I = (x2, y2). Observe that (xy)2 ∈ I2, therefore
(xy)2n ∈ I2n for all n. This gives xy ∈ I. On the other hand, if xy ∈ I∗, we would have
c(xy)q ∈ I [q] = (x2q, y2q) for all q � 0. Then c ∈ (x2q, y2q) :R (xy)q = (xq, yq). This gives
c ∈

⋂
q�0(xq, yq) ⊆

⋂
q�0 m

q = (0). A contradiction. So xy /∈ I∗ and, in fact, J = J∗ for all
J ⊆ R.

Observe that R = FpJx, yK is a regular (local) ring. More generally, we have the following
family of examples.

Example 2.2. Let R be either Fp[x1, . . . , xd] or FpJx1, . . . , xdK. Since F e(R) = Rq ∼=
Fp[xq1, . . . , x

q
d] in the �rst case and FpJxq1, . . . , x

q
dK in the second, it can easily be proved by in-

duction on d > 1 that R is a free Rq-module, with basis given by {xi11 · · ·x
id
d | 0 6 i1, . . . , id 6

q−1}. In particular, the rank of R as an Rq-module is qd. This is equivalent to claiming that
R1/q is a free R-module of rank qd with basis {(xi11 · · ·x

id
d )1/q | 0 6 i1, . . . , id 6 q−1}, or that

F e
∗ (R) is a free R-module of rank qd, and with basis {F e

∗ (x
i1
1 · · ·x

id
d ) | 0 6 i1, . . . , id 6 q− 1}.

In Example 2.2 we have in particular that F e
∗ (R) is �at as an R-module and, since R is

reduced, this is the same as the e-th iteration of the Frobenius map being �at. We now recall
the de�nition and the basic properties of �atness that we will need.

De�nition 2.3. Let R be a ring, and M be an R-module. The module M is �at over R if,
for every exact sequence 0→ A→ B of R-modules, the sequence 0→ A⊗RM → B ⊗RM
is exact. The module M is faithfully �at over R if, for every sequence E : A→ B → C (not
even necessarily a complex), we have that E is exact if and only if E ⊗RM is exact.
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A ring homomorphism f : R → S is said to be (faithfully) �at if S is a (faithfully) �at
R-module via f .

Clearly faithfully �at modules are �at, but the converse does not hold, in general. The
following is a basic result on �atness (stated in our very speci�c case). We give a prove for
completeness.

Proposition 2.4. Let f : R→ S be a ring homomorphism. Then

(1) f is �at if and only if, for allM ∈ Spec(S) maximal ideal, and m = M∩R(= f−1(M))
maximal ideal in R, the induced map f : Rm → SM is �at.

(2) f is faithfully �at if and only if it is �at and, for all R-modules A 6= 0, we have that
A⊗R S 6= 0.

(3) f is faithfully �at if and only if it is �at and f(m)S 6= S for every maximal ideal m
of R.

(4) If f is faithfully �at, then it is injective.

Proof. (1) First, assume that f is �at, and let M be a maximal ideal in S. Let 0→ A→ B
be an exact sequence of Rm-modules, with m = M∩R. We have that A⊗RmSM

∼= A⊗RSM ∼=
(A⊗R S)⊗S SM , and similarly for B. Since f is �at, the sequence 0→ A⊗R S → B ⊗R S
is exact. Finally, localization is �at, therefore 0 → (A ⊗R S) ⊗S SM → (B ⊗R S) ⊗S SM is
exact.
Conversely, assume that SM is a �at Rm-module for all maximal ideals M of S, with

m = M ∩R. Let 0→ A→ B be an exact sequence of R-modules, and let K be the kernel of
A⊗R S → B ⊗R S, which is an S-module. Let M be a maximal ideal of S. Then localizing
gives an exact sequence 0 → KM → (A ⊗R S) ⊗S SM → (B ⊗R S) ⊗S SM . Using the same
isomorphisms as above, this is 0 → KM → Am ⊗Rm SM → Bm ⊗Rm SM . As SM is �at over
Rm by assumption, we must have KM = 0. As this holds for all maximal ideals M in S, this
implies K = 0.
(2) First, assume that f is faithfully �at. Then f is �at. Moreover, if A is an R-module

such that A ⊗R S = 0, then the exactness of the sequence (0 → A → 0) ⊗R S implies that
0→ A→ 0 is exact, that is, A = 0.
Conversely, let E : A

f→ B
g→ C be a sequence; if E is exact then E ⊗R S is exact, since f

is �at by assumption. On the other hand, assume that E ⊗R S : A
fS→ B

gS→ C is exact. By
right-exactness of tensor products we have that Im(g◦f)⊗RS ∼= Im(gS ◦fS), and the latter is
zero by assumption. It follows from our hypotheses that Im(g◦f) = 0, that is E is a complex.
let H(E) denote its homology. Since f is �at, we have that H(E) ⊗R S ∼= H(E ⊗R S), and
the latter is zero by assumption. Again, it follows from our hypotheses that H(E) = 0.
(3) If f is faithfully �at, we only have to show that f(m)S 6= S for all maximal ideals m of

R. But this is immediate from (2), since R/m 6= 0 implies that R/m⊗R S ∼= S/f(m)S 6= 0.
Conversely, thanks to (2) we just need to show that if A is an R-module such that A⊗RS =

0 implies that A = 0. By way of contradiction, assume that A 6= 0, and let a ∈ A be a
non-zero element. Then I = annR(a) is a proper ideal of R, and thus it is contained in
some maximal ideal m. Note that aR ∼= R/ annR(a) = R/I Since f is �at, the inclusion
0→ aR→ A gives an inclusion 0→ aR⊗R S → A⊗R S, and since the latter is zero we have
that 0 = aR⊗RS ∼= R/I⊗RS = S/f(I)S, that is f(I)S = S. But then S = f(I)S ⊆ f(m)S
implies that f(m)S = S, a contradiction. Therefore A = 0.

10



(4) Let x ∈ R be such that f(x) = 0. By �atness we have that xR⊗R S ∼= f(x)S = 0. By
(2) we have that xR = 0, that is, x = 0. �

Observe that, when f is the Frobenius map, Proposition 2.4 shows that F : R→ R is �at
if and only if F : Rm → Rm is �at for all maximal ideals m of R. Moreover, when (R,m) is
local, the condition that F (m)R 6= R is trivially satis�ed. Therefore F : R→ R is �at if and
only if F : Rm → Rm is faithfully �at for all maximal ideals m of R.
Before diving into the proof of Kunz's Theorem, we need some results due to Lech, which

can be found in [Lec64].

De�nition 2.5. Let (R,m) be a local ring. A collection of elements x1, . . . , xn is said to be
Lech-independent if any combination a1x1 + . . .+ anxn = 0 implies that ai ∈ (x1, . . . , xn) for
every i = 1, . . . , n.

Equivalently, if we set q = (x1, . . . , xn), then x1, . . . , xn are Lech-independent if and only
they minimally generate q, and q/q2 is a free R/q-module.

Lemma 2.6 (Lech's Lemma). Let (R,m) be a local ring, and x1, . . . , xn be Lech-independent
elements which generate an m-primary ideal. If x1 = y1z1, then

`R(R/(x1, x2, . . . , xn)) = `R(R/(y1, x2, . . . , xn)) + `R(R/(z1, x2, . . . , xn)).

Proof. We prove that (x1, . . . , xn) :R y1 = (z1, x2, . . . , xn). The containment ⊇ is clear.
Conversely, if ay1 + a1x1 + a2x2 + . . .+ anxn = 0, then multiplying by z1 and rearranging we
get that (a + a1z1)x1 + b2x2 + . . . + bnxn = 0, where bi = z1ai. Our assumption yields that
a+ a1z1 ∈ (x1, . . . , xn) ⊆ (z1, x2, . . . , xn), and therefore a ∈ (z1, x2, . . . , xn), as desired.
To conclude the proof it su�ces to consider the short exact sequence

0 // R/(x1, . . . , xn) :R y1
·y1
// R/(x1, . . . , xn) // R/(y1, x2, . . . , xn) // 0

and to count lengths. �

We are now ready to prove Kunz's Theorem [Kun69].

Theorem 2.7 (Kunz). A ring R is regular if and only if the Frobenius map is �at.

Proof. Since both issues are local, we may assume that (R,m) is local. Observe that If R is
regular, so is its completion R̂; in fact, by Cohen's structure Theorem, if k = R/m then R̂
is isomorphic to a power series ring kJx1, . . . , xdK. Observe that R̂p ∼= kpJxp1, . . . , x

p
dK. It is

easy to see that kpJx1, . . . , xdK is a free kpJxp1, . . . , x
p
dK-module; in particular, kpJxp1, . . . , x

p
dK→

kpJx1, . . . , xdK is �at. Since kpJx1, . . . , xdK → kJx1, . . . , xdK is also �at, it follows that R̂ is a
�at R̂p-module. Since R̂ is faithfully �at over R, it follows that R is �at over Rp, and since R
is reduced this is equivalent to F : R→ R being �at, because the Frobenius map is injective.
For the converse, if the Frobenius map F is �at, then it is in fact faithfully �at, because

it is a �at local morphism. Also, the same is true for any iteration of F . Then Frobenius is
injective, R is reduced, and R is �at over Rq for any q = pe. Let nq = m ∩ Rq, and observe
that it is the maximal ideal of Rq. Moreover, observe that m[q] = nqR. Since R is �at over
Rq, we have that m[q] = nq ⊗Rq R, and therefore, again by �atness

m[q]/(m[q])2 ∼= nq/n
2
q ⊗Rq R ∼=

(
nq/n

2
q ⊗Rq/nq Rq/nq

)
⊗Rq R ∼=

∼= nq/n
2
q ⊗Rq/nq (Rq/nq ⊗Rq R) ∼= nq/n

2
q ⊗Rq/nq R/nqR ∼= nq/n

2
q ⊗Rq/nq R/m[q]
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is a free R/m[q]-module, since nq/n
2
q is a free Rq/nq-module, given that Rq/nq is a �eld.

Thus, if x1, . . . , xd are a minimal generating set of m, then xq1, . . . , x
q
d are Lech-independent.

Passing to the completion does not a�ect lengths, therefore a repeated application of Lemma
2.6 gives that

`R
(
R/m[q]

)
= `R̂

(
R̂/(xq1, . . . , x

q
d)R̂
)

= qd

for all q = pe. By Cohen's Structure Theorem we have that R̂ ∼= kJX1, . . . , XdK/I for some
ideal I. If I 6= (0), we can pick q′ = qe

′ � 0 such that I 6⊆ (Xq′

1 , . . . , X
q′

d ). Then

(q′)d = `(R̂/(xq
′

1 , . . . , x
q′

d )R̂)

= `
(
kJX1, . . . , XdK/(I,Xq′

1 , . . . , X
q′

d )
)

< `
(
kJX1, . . . , XdK/(Xq′

1 , . . . , X
q′

d )
)

= (q′)d,

which contradicts our previous claim. Therefore I = (0), and R̂ is regular. It follows that R
is regular as well. �

We end this section relating regular rings and tight closure. We �rst need to recall some
very-well known properties of �at maps.

Proposition 2.8. Let f : R→ S be a �at ring homomorphism. Let I, J be ideals of R, and
x ∈ R be an element. The following hold:

(1) f(I :R x)S = f(I)S :S f(x).
(2) f(I ∩ J)S = f(I)S ∩ f(J)S.
(3) If f is faithfully �at, then f(I)S ∩R = I

Proof. (1) We have a short exact sequence of R-modules:

0→ R

I :R x

α−→ R

I
→ R

(I, x)
→ 0

where the map α sends the class of an element r ∈ R to the class of rx ∈ R/I. Observe that
it is well de�ned, since x(I :R x) ⊆ I. Since S is �at over R, this induces an exact sequence

0→ R

I :R x
⊗R S

α⊗RidS−→ R

I
⊗R S →

R

(I, x)
⊗R S → 0

Using the isomorphism R/J ⊗R S ∼= S/f(J)S, this becomes

0→ S

f(I :R x)S

β−→ S

f(I)S
→ S

f(I, x)S
→ 0

where β sends the class of an element s ∈ S to the class of sf(x) in S/IS. This sequence
shows that f(I :R x)S = {s ∈ S | sf(x) ∈ f(I)S} = f(I)S :S f(x).
(2) The proof is similar to that of (2), and it is left as an exercise.
(3) It follows from the fact that the map R/I → R/I ⊗R S ∼= S/IS is injective. �

Remark 2.9. In the case of the Frobenius map in a regular ring R, then (1) says that for all
I ⊆ R, x ∈ R and q = pe we have I [q] :R xq = (I :R x)[q]. Similarly, (2) states that for all
I, J ⊆ R, and q = pe, we have (I ∩ J)[q] = I [q] ∩ J [q].
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We can �nally state and prove Hochster and Huneke's Theorem on tight closure in regular
rings.

Theorem 2.10 (Hochster�Huneke). Let R be a regular ring. Then every ideal of R is tightly
closed.

Proof. Let I ⊆ R be an ideal. Let x ∈ R be such that cxp
e ∈ I [pe] for all e > e0, for some

e0 ∈ N∗ and c ∈ R◦. By Proposition 2.8, we then have

c ∈
⋂
e>e0

I [pe] :R x
pe =

⋂
e>e0

(I :R x)[pe] ⊆
⋂
e>e0

(I :R x)p
e

.

Assume, by way of contradiction, that x /∈ I. Then (I :R x) is a proper ideal, hence
contained in some maximal ideal m. Thus we have (I :R x)p

e ⊆ mpe for all e. It follows that
c ∈

⋂
e>e0

mpe , and therefore c = 0 in Rm by Krull's Intersection Theorem. In particular, c
is a zero-divisor, and therefore c belongs to some associated prime of R. Since R is regular,
it has no embedded primes, and therefore c belongs to some minimal prime of R. This
contradicts our choice of c ∈ R◦, and it then follows that x ∈ I. �

3. Weakly F-regular rings

De�nition 3.1. A ring R is said to be weakly F-regular if every ideal I ⊆ R is tightly
closed. R is said to be F-regular if, for every multiplicatively closed set W ⊆ R, the ring RW

is weakly F-regular.

By Theorem 2.10 we have that regular rings are F-regular. Moreover, F-regular rings are
clearly weakly F-regular. Some cases in which the converse to the latter holds have been
proved but, in general, it is unknown whether the two notions coincide. The di�culty is of
course related to the problem of whether tight closure localizes, that is, whether I∗RW =
(IRW )∗ for every multiplicatively closed set W and every ideal I ⊆ R. This is known to be
false thanks to the following example provided by Brenner and Monsky in [BM10]. However,
we point out that this example does not give any information on the relation between weakly
F-regular and F-regular rings.

Example 3.2 (Brenner�Monsky). Let R = F2[x, y, z, t]/(z4 + xyz2 + x3z + y3z + tx2y2),
I = (x4, y4, z4),W = F2[t]\{0} and f = y3z3, then f ∈ (IRW )∗, but f 6∈ I∗RW . In particular,
we have I∗RW 6= (IRW )∗. Hence, tight closure does not commute with localization.

Tight closure is known to behave well with respect to localization in certain cases. This
allows us to reduce any weakly F-regularity issue to the local case.

Lemma 3.3. Let I ⊆ R be an ideal.

(1) If I is an ideal of R that is primary to a maximal ideal m, then (IRm)∗ = I∗Rm.
(2) If every ideal primary to a maximal ideal is tightly closed, then every ideal of R is

tightly closed.

Proof. (1) First the easy containment: let x ∈ I∗; we want to show that its image in Rm

belongs to (IRm)∗ (this is true for any ideal, not necessarily m-primary). By assumption,
there is c ∈ R◦ such that cxq ∈ I [q] for all q � 0. It follows that the image of cxq in Rm

belongs to I [q]Rm = (IRm)[q] for all q � 0. As c ∈ R◦, we also have that c ∈ (Rm)◦, and this
proves the containment.
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For the other containment, let α = x/y ∈ Rm (with x ∈ R and y /∈ m) be such that
c′αq ∈ (IRm)[q] for some c′ = c/c2 ∈ (Rm)◦. Multiplying by c2y

q we get that cxq

1
∈ (IRm)[q]

for all q � 0. Let P1, . . . , Pt be the minimal primes of R, and assume that c ∈ P1 ∩ . . .∩ Ps,
but c /∈ Pj for all j = s+ 1, . . . , t. Since c ∈ (Rm)◦, we must necessarily have Pi 6⊆ m for all
i = 1, . . . , s. Let d ∈ Ps+1 ∩ . . . ∩ Pt r

⋃s
j=1 Pj. Then d is nilpotent in Rm, that is dN = 0 in

Rm for some (�xed) N . Let I = (f1, . . . , fr). Then we have a relation

(c+ dN)xq

1
=
cxq

1
=
∑
i

ai,q
bi,q

f qi

for some bi,q /∈ m (depending on q!!). Let e = c + dN ∈ R◦, and bq =
∏

i bi,q. This gives
bqex

q ∈ I [q] inside R. Since I is m-primary, so is I [q] for all q. In particular, since bq /∈ m, we
have exq ∈ I [q] for all q � 0. This gives x ∈ I∗, and thus α = x/y ∈ I∗Rm.
(2) Observe that, given any ideal I ⊆ R, we have I =

⋂
m∈Max(R)

⋂
n∈N(I + mn). Since

every ideal I + mn is either R or m-primary, and is therefore assumed to be tightly closed,
we have

I∗ =

(⋂
m,n

(I + mn)

)∗
⊆
⋂
m,n

(I + mn)∗ =
⋂
m,n

(I + mn) = I. �

Lemma 3.4. A ring R is weakly F-regular if and only if Rm is weakly F-regular for all
maximal ideal m of R.

Proof. Assume that R is weakly F-regular, and let m be a maximal ideal. By Lemma 3.3, to
check that ideals in Rm are tightly closed, it su�ces to show mRm-primary ideals. So let IRm

be one such ideal, for some ideal I ⊆ R. Again by Lemma 3.3 we have (IRm)∗ = I∗Rm = IRm,
as desired.
Conversely, assume that Rm is weakly F-regular for all maximal ideals m in R. Again

by Lemma 3.3, to show that R is weakly F-regular it is su�cient to show that I = I∗ for
all ideals primary to a maximal ideal. So let I be an m-primary ideal, and x ∈ I∗. Then
x
1
∈ I∗Rm = (IRm)∗ = IRm. It follows that yx ∈ I for some y /∈ m; since I is m-primary, it

follows that x ∈ I, as desired. �

As motivation for introducing weakly F-regular rings, we will end this section by proving
that weakly F-regular rings are Cohen-Macaulay and normal (i.e., a ring that locally at every
maximal ideal is a domain which is integrally closed in its �eld of fractions). Since all these
issues are local, we will assume for the rest of the section that (R,m) is local.

Proposition 3.5. Let (R,m) be a weakly F-regular local ring. Then R is a normal domain.

Proof. First of all, R is reduced. In fact, by Proposition 1.20 we have that
√

0 ⊆ (0)∗ = (0).
Now we prove that R is a domain. Let (0) = P1 ∩ P2 ∩ . . . ∩ Pt be the minimal primes of R,
and assume that t > 2. We want to reach a contradiction, which will end the proof. If t > 2,
we can pick x ∈ P1 r

⋃t
i=2 Pi and y ∈ P2 ∩ . . . ∩ Pt r P1, by Prime Avoidance. Observe that

xy = 0. For this reason, for all q = pe we have (x + y)xq = x(x + y)q ∈ (x + y)[q]. Observe
that x+y ∈ R◦, by choice of x and y. Therefore x ∈ (x+y)∗ = (x+y). This says that there
exists r ∈ R such that x = r(x + y), that is, (1 − r)x = ry. If r /∈ m, then y ∈ (x) ∈ P1, a
contradiction. If r ∈ m, then 1− r /∈ m, so that x ∈ (y) ∈ P2, a contradiction again.
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Finally, let α = r
s
∈ Frac(R) be an element which is integral over R. Then, there exist

elements t1, . . . , tN ∈ R such that αN + t1α
N−1 + . . .+ tN = 0. Multiplying the equation by

sN gives an equation rN + t1sr
N−1 + . . . + tNs

N = 0 in R. Note that this gives r ∈ (s). By
Proposition 1.15, we can �nd c ∈ R◦ such that crn ∈ (s)n = (sn) for all n� 0. In particular,
crq ∈ (sq) = (s)[q] for all q = pe � 0, and thus r ∈ (s)∗. Since R is weakly F-regular, r ∈ (s),
and therefore there is t ∈ R such that r = ts. It follows that α = r

s
= t ∈ R, and R is

normal. �

We recall that a parameter for a ring (R,m) of positive dimension is an element x ∈ m such
that dim(R/(x)) = dim(R)− 1. A system of parameters is a sequence of elements x1, . . . , xd
such that xt+1 is a parameter for R/(x1, . . . , xt). We recall that R is said to be Cohen-
Macaulay if every system of parameters x1, . . . , xd satis�es (x1, . . . , xt) :R xt+1 = (x1, . . . , xt)
for every t.

Theorem 3.6 (Colon capturing). Let (R,m) be a local ring that is the homomorphic image
of a Cohen-Macaulay local ring. Let x1, . . . , xd be system of parameters. Then

(x1, . . . , xt) :R xt+1 ⊆ (x1, . . . , xt)
∗.

Proof. Let P ∈ Min(R). By Proposition 1.20 (2) it su�ces to show the containment in R/P ;
therefore we may assume without loss of generality that R is a domain. By assumption
R = S/Q, where Q is a prime of S, say of height h. Let y1, . . . , yh ∈ Q be a regular
sequence and choose z′1 ∈ S be any lift of x1. By assumption, z′1 does not belong to Q.
Since Q is a minimal prime over J = (y1, . . . , yh) and S is Cohen-Macaulay, we have that
Ass(S/J) = Min(J) = {Q,Q1, . . . , Qs}, where Q1, . . . , Qs are primes of the same height h.
Assume that z′1 ∈ Q1∩ . . .∩Qt, and z′1 /∈ Qt+1∪ . . .∪Qs. By Prime Avoidance, we can choose
z′′1 ∈ Q ∩Qt+1 ∩ . . . ∩Qs r (Q1 ∪ . . . ∪Qt). Observe that z1 = z′1 + z′′1 avoids all associated
primes of (y1, . . . , yh), and it is still a lift of x1, since z′′1 ∈ Q. Therefore y1, . . . , yh, z1 forms a
regular sequence. Repeating this argument with a lift z′t of xt and the ideal Q+(z1, . . . , zt−1)
we obtain elements z1, . . . , zd of S such that (z1, . . . , zt)S/Q = (x1, . . . , xt)S/Q for all t =
1, . . . , d, and y1, . . . , yh, z1, . . . , zd forms a regular sequence in S. We may replace x1, . . . , xd by
the images of z1, . . . , zd in S/Q. Since Q is a minimal prime of J = (y1, . . . , yh), we have that
Q is nilpotent in (S/J)Q. Thus, there exists c /∈ Q and q0 = pe0 such that cQ[q0] ⊆ J . Now,
let r ∈ (x1, . . . , xt) :R xt+1, so that xt+1r =

∑t
i=1 rixi. Lift the relation to S, so that there are

lifts s, s1, . . . , st ∈ S of r, r1, . . . , rt such that zt+1s−
∑t

i=1 sizi ∈ Q. For q > q0, multiplying by
c and taking q-th powers we get c(szt+1)q−

∑t
i=1 c(sizi)

q ∈ cQ[q] ⊆ J . Rewriting the relation
we get csqzqt+1 ∈ (zq1, . . . , z

q
t , y1, . . . , yh)S. Since zq1, . . . , z

q
t , z

q
t+1, y1, . . . , yh form a regular

sequence in S, we have that csq ∈ (zq1, . . . , z
q
t , y1, . . . , yh)S :S z

q
t+1 = (zq1, . . . , z

q
t , y1, . . . , yh)S

for all q > q0. Mapping to S/Q = R this gives that crq ∈ (x1, . . . , xt)
[q] for all q > q0, that

is, r ∈ (x1, . . . , xt)
∗. �

Theorem 3.7. Let R be a weakly F-regular ring which is the homomorphic image of a
Cohen-Macaulay ring. Then R is Cohen-Macaulay.

Proof. Both issues are local (at maximal ideals), so we may assume that (R,m) is local.
Let x1, . . . , xd be any system of parameters for R. By Theorem 3.6, and since R is weakly
F-regular, we have that (x1, . . . , xt) :R xt+1 ⊆ (x1, . . . , xt)

∗ = (x1, . . . , xt). Therefore R is
Cohen-Macaulay. �
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Remark 3.8. One may wonder whether the condition of being homomorphic image of a
Cohen-Macaulay local ring is very restrictive or not. In fact, it turns out that a large class
of rings satis�es this assumption. First of all, observe that if (R,m, k) is local and complete,
then even more is true, namely by Cohen's Structure Theorem R is a quotient of a power
series ring S = kJx1, . . . , xnK. By a result of Gabber (Theorem 4.8), in positive characteristic
the same is true for a larger class of rings, called F-�nite rings, that we are going to introduce
in Section 4.

Recall that, if S is a ring and R is a subring of S, then R is said to be a direct summand
of S if the inclusion R ⊆ S splits as a map of R-modules. This means, that there exists an
R-linear map ρ : S → R such that, if i : R ↪→ S denotes the inclusion, then ρ ◦ i = idR.
Equivalently, there exists an R-module M such that S ∼= R⊕M .
We now prove that direct summands of (weakly) F-regular rings are (weakly) F-regular.

As a consequence of this fact and of Theorem 2.10, we have that direct summands of regular
rings are F-regular.

Proposition 3.9. Let R ⊆ S be an inclusion of integral domains such that R is a direct
summand of S. If S is (weakly) F-regular, then R is (weakly) F-regular.

Proof. After possibly localizing R and S at a multiplicatively closed system W ⊆ R, we
may only prove that R is weakly F-regular if S is. First, we recall that since R is a direct
summand of S every ideal I of R is contracted from S, that is IS∩R = I. In fact, I ⊆ IS∩R
always holds. Conversely, if r ∈ R is such that r =

∑t
j=1 ijsj for some ij ∈ I and sj ∈ S,

then applying the splitting ρ : S → R we get r = ρ(r) = ρ
(∑t

j=1 ijsj

)
=
∑t

j=1 ijρ(sj) ∈ I.
Now, let I ⊆ R be an ideal. We prove that I is tightly closed. Take x ∈ I∗, this

implies that there exists c ∈ R◦ such that cxq ∈ I [q] for all q = pe � 0. It follows that
cxq ∈ I [q]S = (IS)[q] for all q � 0. Note that R◦ = Rr {0} ⊆ S◦ = S r {0}. It follows that
x ∈ (IS)∗ = IS since S is weakly F-regular by assumption. Therefore x ∈ IS ∩R = I which
shows that I is tightly closed. �

Thanks to the previous result we can produce many examples of weakly F-regular rings
that are not regular.

Example 3.10 (Invariant rings of �nite groups are weakly F-regular). Let k be an alge-
braically closed �eld of characteristic p > 0. We consider a power series ring S = kJx1, . . . , xdK
and a �nite group G acting linearly on S such that p - |G|. We denote by R = SG the cor-
responding invariant ring. In this case, the Reynolds operator

ρ : S → R, ρ(x) =
1

|G|
∑
σ∈G

σ(x)

gives a splitting for the inclusion R ⊆ S. So R is a direct summand of S, which is regular.
Therefore, R is weakly F-regular by Proposition 3.9 and Theorem 2.10. We exhibit two
explicit examples in dimension 2. Let S = kJu, vK.

(1) We consider a cyclic group G of order n, generated by a matrix diag(ξ, ξ), where
ξ ∈ k is a primitive n-th root of unity. The group G acts linearly on each variable as
u 7→ ξu and v 7→ ξv. Then, the corresponding invariant ring R is the n-th Veronese
subring

R = k
q
un, un−1v, . . . , uvn−1, vn

y
= k

q
uivj | i+ j = n

y
.
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More generally, Veronese subrings of power series rings over an algebraically closed
�eld are weakly F-regular. In particular, they are Cohen-Macaulay and normal.

(2) We consider again a cyclic group G of order n, but this time generated by a matrix
diag(ξ, ξ−1), where ξ ∈ k is a primitive n-th root of unity. The action of G on S is
given by u 7→ ξu and v 7→ ξ−1v. So, the invariant ring R is

R = k Jun, uv, vnK ∼= kJx, y, zK/(yn − xz)

which is called An−1-singularity. Note that this ring is clearly Cohen-Macaulay, since
it is a hypersurface, and it is also normal by Proposition 3.5.

Remark 3.11. Every diagonal action of a group G generated by a matrix diag(ξi, ξj) acting
linearly on S = kJu, vK produces a ring of invariants R = SG which is a direct summand
of S, regardless of the characteristic of k and the order of G. In fact, consider the map of
monoids N2 → Z/(n) sending (a, b) 7→ ai + bj, and let H be its kernel. Then R = kJHK,
and its complement M = kJN2 rHK is a module over R, giving a direct sum decomposition
S = R⊕M as R-modules. This fact can, of course, be generalized in several ways; e.g., for
higher number of variables, and more general group actions which can be related to maps
between monoids.

4. A brief discussion on F-finiteness

De�nition 4.1. We say that a ring R of characteristic p > 0 is F-�nite if the Frobenius
map F : R→ R is a �nite morphism.

Note that F is �nite if and only if F e is �nite for some (equivalently, all) integers e > 0.
In the notation introduced in Section 1, we have that R is F-�nite if and only if F e

∗ (R) is a
�nitely generated R-module for some (equivalently, all) e > 0.

Remark 4.2. When R is reduced, R is F-�nite if and only if R is a �nitely generated Rq-
module for some (equivalently, all) q = pe, if and only if or R1/q is a �nitely generated
R-module for some (equivalently, all) q = pe.

Example 4.3. A �eld k is F-�nite if and only if [k : kp] < ∞. For instance, any �nitely
generated �eld extension of a perfect �eld is F-�nite (e.g., k = Fp(t1, . . . , tn) is F-�nite, since
[k : kp] = pn). An example of a �eld which is not F-�nite is Fp(t1, . . .).

Proposition 4.4. The following classes of rings are F-�nite:

(1) Polynomial rings in �nitely many variables over F-�nite rings.
(2) Power series rings in �nitely many variables over F-�nite rings.
(3) Quotients of F-�nite rings.
(4) Localizations of F-�nite rings.

Proof. For (1): if R is F-�nite and x is a variable, then {xi | 0 6 i < p} is a basis of R[x]
as an R[xp]-module. If {F∗(rj) : j = 1, . . . , n} is a �nite generating set of F∗(R) as an
R-module, then {F∗(rjxi) | j = 1, . . . , n, i = 0, . . . , p− 1} is then a generating of F∗(R[x]) as
an R[x]-module. The proof of (2) is completely analogous, and we omit it.
For (3): assume that R is F-�nite, and let I ⊆ R be an ideal. By assumption we have

a surjection R⊕n → F∗(R) → 0 for some n > 0, which induces a surjection (R/I)⊕n →
F∗(R)/IF∗(R) → 0. We claim that IF∗(R) is a submodule of F∗(I). In fact, an element of
IF∗(R) is of the form

∑
j ijF∗(rj), with ij ∈ I and rj ∈ R. Recall that ijF∗(rj) = F∗(i

p
jrj) ∈
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F∗(I). Therefore we have a surjection F∗(R)/IF∗(R) → F∗(R)/F∗(I) → 0. Observing
that F∗(R)/F∗(I) ∼= F∗(R/I), and combining this with the previous considerations, gives a
surjection (R/I)⊕n → F∗(R/I)→ 0. Therefore R/I is F-�nite.
For (4): using the same argument as in (3), we have a surjection R⊕n → F∗(R) → 0.

If W is a multiplicatively closed system, then localizing we obtain a surjection (RW )⊕n →
(F∗(R))W → 0, and recalling that F∗(R)W ∼= F∗(RW ) by Proposition 1.10 completes the
proof. �

Remark 4.5. Proposition 4.4 yields that a �nitely generated k-algebra is F-�nite if and only
if k is F-�nite, if and only if [k : kp] <∞. The same is true for complete local rings. In fact,
by Cohen's structure Theorem, if (R,m) is a complete local ring with residue �eld k = R/m,
then R is a quotient of a power series ring S = kJx1, . . . , xnK. By Proposition 4.4 we have
that R is F-�nite if and only if S is F-�nite, if and only if [k : kp] <∞.

One may wonder whether, as for weakly F-regular, being F-�nite is a local property,
that is whether it is true that a ring R is F-�nite if and only every localization Rm at a
maximal ideal m ⊆ R is F-�nite. While R F-�nite implies Rm F-�nite by Proposition 4.4,
the other direction does not always hold. An example was provided recently by Dumitrescu
and Ionescu [DI20].

Example 4.6 (Dumitrescu�Ionescu). Let p > 2 be a prime and let k be an algebraically
closed �eld of characteristic p. Consider the ring

R = k

[
X,

1√
(X + a)3 +

√
b3
| a, b ∈ k, b 6= 0

]
,

where X is an indeterminate, and for each square root in the denominator one chooses one
of its values. Then Rm is F-�nite for any maximal ideal m of R, but R is not F-�nite.

Lemma 4.7. Let (R,m) be an F-�nite local ring. If R is reduced then R̂ is reduced.

Proof. Since F e
∗ (R) is �nitely generated, we have F e

∗ (R) ⊗R R̂ ∼= F̂ e
∗R. Now, if we identify

F e
∗ (R) with R, then F̂ e

∗R is the completion of R with respect to the ideal F e(m)R = m[pe].
Since

√
m[pe] = m, this is the same as the m-adic completion of R, that is F̂ e

∗R
∼= F e

∗ (R̂). If
R is reduced, the map R→ F e

∗ (R) is injective, and so R̂→ F e
∗ (R)⊗ R̂ ∼= F e

∗ (R̂) is injective
as well, since the functor M 7→M ⊗R R̂ is exact. Hence R̂ is reduced. �

We conclude the section with an important theorem by Gabber that shows that F-�nite
rings are homomorphic image of regular rings. We record the result here without proof (see
[MP21, Theorem 12.5] for a proof).

Theorem 4.8. [Gab04] Let R be an F-�nite ring. Then there exists an F-�nite regular ring
S such that R = S/I for some ideal I ⊆ S.

5. Splittings, F-pure and strongly F-regular rings

We start by giving another proof that regular rings are F-regular, to give a �avor of what
is coming next. For simplicity, we only show that R = FpJx1, . . . , xnK is weakly F-regular.
Let I ⊆ R be an ideal, and x ∈ R be such that cxq ∈ I [q] for some c 6= 0 and all q = pe � 0.
Equivalently, we have that F e

∗ (c)x ∈ IF e
∗ (R) for all e � 0. Since c 6= 0, for all e � 0 we
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have that c /∈ m[pe] or, equivalently, F e
∗ (c) /∈ mF e

∗ (R). By Nakayama's Lemma, this simply
means that F e

∗ (c) can be made part of a minimal generating set of the R-module F e
∗ (R), for

e� 0. However, we have already observed that F e
∗ (R) is a free R-module. Therefore, for e

su�ciently large we can make F e
∗ (c) part of a basis of F e

∗ (R). For a �xed e � 0, de�ne an
R-linear map ψ : F e

∗ (R) → R by sending F∗(c) 7→ 1, and every other element of a basis to
any element of R (e.g., to 0). Then we have that

x = ψ(F e
∗ (c))x = ψ(F e

∗ (c)x) ∈ ψ(IF e
∗ (R)) = Iψ(F e

∗ (R)) ⊆ IR.

It follows that I = I∗ for every ideal I ⊆ R, and thus R is weakly F-regular.
In general, F e

∗ (R) is not a free R-module, therefore we do not have such freedom in choosing
a map ψ : F e

∗ (R)→ R. This is what motivates the study of the R-modules HomR(F e
∗ (R), R),

for e ∈ N.
Elements of HomR(F e

∗ (R), R) are called Cartier maps, or p−e-linear maps, since an R-linear
map ψ : F e

∗ (R)→ R can also be viewed as an additive map ψ′ : R→ R satisfying ψ′(rp
e
s) =

rψ′(s) for all r, s ∈ R. Cartier maps can be put together to form a non-commutative Fp-
algebra C =

⊕
e>0 HomR(F e

∗ (R), R), called the Cartier algebra of R, whose product we brie�y
describe below. We will not explore this direction in these notes.
Given ψ ∈ HomR(F e

∗ (R), R) and ϕ ∈ HomR(F e′
∗ (R), R), we can multiply ψ and ϕ as

follows: ψ · ϕ = ψ ◦ F e
∗ (ϕ) ∈ HomR(F e+e′

∗ (R), R). Note that R is not central in C since for
r ∈ R and ψ ∈ HomR(F e

∗ (R), R) we have [r · ψ](F e
∗ (s)) = ψ(rF e ∗ (s)) = ψ(F e

∗ (r
pes)), while

[ψ · r](F e
∗ (s)) = ψ(F e

∗ (r)F
e
∗ (s)) = ψ(F e

∗ (rs)).
Note that HomR(F e

∗ (R), R) is actually an F e
∗ (R)-module, with module structure given by

pre-multiplication: for ψ : F e
∗ (R)→ R, and F e

∗ (r) ∈ F e
∗ (R), then [F e

∗ (r) · ψ] = ψ(F e
∗ (r)−) is

the map de�ned as F e
∗ (r) · ψ(F e

∗ (s)) = ψ(F e
∗ (r)F

e
∗ (s)) = ψ(F e

∗ (rs)) for all F
e
∗ (s) ∈ F e

∗ (R).
In order to study Cartier maps, we recall the following general notions.
Let f : R→ S be ring homomorphism. We say that f splits if there exists g ∈ HomR(S,R)

such that g ◦ f = idR. Note that, in particular, f has to be injective (and g surjective).
On the other hand, f is said to be pure if, for every R-module M , then induced map
fM : R⊗RM → S ⊗RM is injective.

Remark 5.1. It is immediate to see that if f is split, then it is pure. In fact, if g : S → R is
a splitting, then if M is an R-module the map fM still has a splitting, namely the map gM
induced by tensoring g with M . Moreover, if f is pure then f = fR must be injective.

We now apply these notions to the Frobenius homomorphism.

De�nition 5.2. Let R be a ring of characteristic p > 0. We say that R is F-split if the
Frobenius map splits. We say that R is F-pure if F : R→ R is a pure homomorphism.

Remark 5.3. Using the Frobenius push-forward point of view, we have that R is F-split (resp.
F-pure) if and only if the map R→ F∗(R) splits (resp. is pure). By what we have observed
above, F-split rings are F-pure. Moreover, F-pure rings are reduced by Proposition 1.5, since
if the Frobenius map is pure it is injective.

Even though F-split and F-pure are di�erent notions (for instance, see [DS16]), they are
actually equivalent notions for large classes of rings; in particular, for complete local rings
and for F-�nite rings. The fact that a pure morphism f : R→ S is split is true more generally
whenever f is a �nite map. The proof is based on the following homological lemma.
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Lemma 5.4. Let R be a ring, and M be a �nitely generated R-module, with presentation

G
Θ−→ H → M → 0 (here, G and H are �nite free R-module). Let M ′ = coker(Θ′), where

(−)′ = HomR(−, R), and Θ′ : H ′ → G′ is the map dual to Θ. Given a short exact sequence
0→ A→ B → C → 0 of R-modules, we have

coker(HomR(M,B)→ HomR(M,C)) = ker(M ′ ⊗R A→M ′ ⊗R B).

Proof. Since G and H are free, we have an exact diagram

0 // H ′ ⊗R A

��

// H ′ ⊗R B

��

// H ′ ⊗R C

��

// 0

0 // G′ ⊗R A // G′ ⊗R B // G′ ⊗R C // 0

Since H ′ is free, we have an isomorphism H ′⊗RB ∼= HomR(H,B). Under this isomorphisms,
we have ker(H ′ ⊗R B → G′ ⊗R B) = ker(HomR(H,B) → HomR(G,B)) = HomR(M,B).
Similarly for C. As coker(H ′ ⊗R A→ G′ ⊗R A) ∼= M ′ ⊗R A (and similarly for B), the snake
lemma concludes the proof. �

Corollary 5.5. F-�nite F-pure rings are F-split.

Proof. If R is F-pure, then the map ϕ : R→ F∗(R) is injective. Let C be the cokernel, and

consider the short exact sequence E : 0 → R → F∗(R)
β→ C → 0. Apply Lemma 5.4 to

M = C to get that coker(HomR(C,F∗(R))
β∗−→ HomR(C,C)) = ker(C ′⊗RR→ C ′⊗RF∗(R)),

where β∗ = HomR(C, β). Note that ker(C ′ ⊗R R → C ′ ⊗R F∗(R)) = 0, since R → F∗(R) is

pure. It follows that the map HomR(C,F∗(R))
β∗

HomR (C,C) is surjective and, in particular,
there exists γ : C → F∗(R) such that β∗(γ) = β ◦ γ = idC . Then the exact sequence E splits,
and R is therefore F-split. �

Proposition 5.6. If R is a regular ring, then R is F-pure. Moreover, if R is F-�nite, then
it is F-split.

Proof. The second claim follows immediately from the �rst and Corollary 5.5. For the �rst,
thanks to Kunz's theorem 2.7 it su�ces to show that a faithfully �at ring map f : R → S
is pure. Let M be an R-module, and let x ∈ M be such that fM(x) = 0 in M ⊗R S. Since
f is �at, the inclusion xR ⊆ M induces an inclusion xR ⊗R S → M ⊗R S, under which the
element x⊗ 1 maps to the element fM(x) = 0. In particular, x⊗ 1 = 0, which implies that
xR ⊗R S = 0. By Proposition 2.4 (2) we conclude that xR = 0, that is, x = 0. Thus fM is
injective, and the proof is complete. �

We will see that even weakly F-regular rings are F-pure, but we delay the proof until
Section 7.
We now show that F-purity localizes, and that F-purity can be checked locally. If R is F-

�nite, then the same holds for F-splitness, in light of Corollary 5.5; however, in the following
result we do not assume that R is F-�nite.

Proposition 5.7. Let R be a ring. The following conditions are equivalent:

(1) R is F-pure.
(2) RW is F-pure for every multiplicatively closed system W ⊆ R.
(3) RP is F-pure for all prime ideals P ∈ Spec(R).
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(4) Rm is F-pure for all maximal ideals m of R.

Proof. Assume (1), and letM be an RW -module; we want to show that (RW → F∗(RW ))⊗RW
M is injective. Since F∗(RW ) ∼= (F∗(R))W , and

(RW → F∗(RW ))⊗RW M ∼= ((R→ F∗(R))⊗R RW )⊗RW M
∼= (R→ F∗(R))⊗R (RW ⊗RW M) ∼= (R→ F∗(R))⊗RM,

we conclude by our assumption that R is F-pure. The implications (2) ⇒ (3) ⇒ (4) are
trivial. Now assume (4). By way of contradiction, assume that there exists an R-module
M such that FM : (R→ F∗(R)) ⊗R M is not injective. In particular, we can �nd a non-
zero element x ∈ M such that FM(x) = 0. By assumption, we have that annR(x) is a
proper ideal, hence contained in some maximal ideal m. In particular, the image of x
inside Mm

∼= Rm ⊗Rm Mm is still non-zero while the image of FM(x) is, of course, still
zero in (F∗(R) ⊗R M)m ∼= F∗(R) ⊗R Mm

∼= F∗(Rm) ⊗Rm Mm. In other words, the map
(Rm → F∗(Rm))⊗Rm Mm is not injective, contradicting the fact that Rm is F-pure. �

We observe that the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) of Proposition 5.7 hold also for
F-splitness, regardless of the F-�nite assumption. If R is F-�nite, then an alternative proof
of (4) ⇒ (1) is also given by the following observation: R is F-split if and only if the map
HomR(F∗(R), R) → HomR(R,R) induced by the Frobenius map R → F∗(R) is surjective.
The latter happens if and only if such a map is surjective when localized at all maximal ideals
m, and since R is F-�nite, this is equivalent to HomR(F∗(R), R)m ∼= HomRm(F∗(Rm), Rm)→
HomRm(Rm, Rm) being surjective for all maximal ideals of R, i.e., Rm is F-split for all maximal
ideals m of R. While there are short exact sequences of (necessarily in�nitely generated)
modules which are locally split but do not split globally, we do not know whether Rm F-split
for all maximal ideals m of R implies that R is F-split in general.

Lemma 5.8. For e > 0 let ϕe : R → F e
∗ (R) be the map sending 1 7→ F e

∗ (1). The following
conditions are equivalent.

(1) R is F-split, i.e., ϕ1 splits.
(2) There exists e > 0 such that ϕe splits.
(3) ϕe splits for all e > 0.
(4) There exists e > 0 and a surjective R-linear map F e

∗ (R)→ R.

Proof. Clearly (1) implies (2) and (3) implies (1). Assume (2), and let e > 0 be such that ϕe
splits, and let ψe : F e

∗ (R) → R be a splitting. First, we prove that ϕne : R → F ne
∗ (R) splits

for every n > 0. In fact, it is enough to observe that ϕne = F
(n−1)e
∗ (ϕe) ◦ . . . ◦ F e

∗ (ϕe) ◦ ϕe.
Thus, the composition ψne = ψe ◦ F e

∗ (ψe) ◦ . . . ◦ F
(n−1)e
∗ (ψe) gives a splitting of ϕne.

Now let e′ > 0 be any integer, and choose n such that e′ < ne. The composition

R
ϕe′

// F e′
∗ (R)

F e
′
∗ (ϕne−e′ )

// F e′
∗ (F ne−e′

∗ (R)) ∼= F ne
∗ (R)

ψne
// R

is the identity, and therefore ψe′ = ψne ◦ F e′
∗ (ϕne−e′) is a splitting of ϕe′ .

Finally, clearly (2) implies (4). Conversely, if ψ : F e
∗ (R)→ R is a surjective map, then let

F e
∗ (r) ∈ F∗(R) be an element that maps to 1. Note that the composition

R
ϕe

// F e
∗ (R)

·F e∗ (r)
// F e
∗ (R)

ψ
// R,
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where F e
∗ (R)

·F e∗ (r)−→ F e
∗ (R) is the F e

∗ (R)-linear map consisting of multiplication by the element
F e
∗ (r), is the identity. Therefore R is F-split. �

From now on, assume that R is F-�nite. By Theorem 4.8, we can write R = S/I for some
F-�nite regular ring S. Using this presentation of R, we want to describe more explicitly
elements of HomR(F e

∗ (R), R). We will focus on the case e = 1, but the theory we develop
and the results we present apply with the obvious modi�cations to any power of p.

Remark 5.9. If S is a Gorenstein local ring, then clearly ωS ∼= S, where ωS denotes the
canonical module of S. Since F∗(S) is an S-module of the same dimension as S, we have
that ωF∗(S)

∼= HomS(F∗(S), S); however, as ring F∗(S) is isomorphic to S, and hence it is
itself Gorenstein. It follows that HomS(F∗(S), S) ∼= F∗(S) as a F∗(S)-module.

The next Lemma allows to identify a generator of HomS(F∗(S), S) as a F∗(S)-module in
the regular (local and N-graded) case.

Lemma 5.10. Let k be a perfect �eld, and S be either a power series ring kJx1, . . . , xnK or a
positively graded polynomial ring k[x1, . . . , xn]. Let Λ = {(i1, . . . , in) ∈ Nn | 0 6 ij < p}, and
B = {F∗(xi11 · · ·xinn ) | i = (i1, . . . , in) ∈ Λ} be the standard basis of F∗(S) as an S-module.
For i ∈ Λ let ϕi : F∗(S)→ S be the S-linear map de�ned on the elements of B as follows:

ϕi(F∗(x
j1
1 · · ·xjnn )) =


1 if j = i

0 otherwise

Let Φ = ϕ(p−1,...,p−1). Then HomS(F∗(S), S) is a principal F∗(S)-module, generated by Φ.

Proof. Since F∗(S) is free with basis B, it is clear that HomS(F∗(S), S) is a free S-module,
with dual basis given by {ϕi | i ∈ B}. Thus, it su�ces to show that ϕi ∈ [F∗(S) · Φ]
for every i ∈ Λ. Recall that the F∗(S)-action is de�ned as follows: if F∗(s) ∈ F∗(S) and
ϕ ∈ HomS(F∗(S), S), then [F∗(s) ·ϕ] = ϕ(F∗(s) ·−) is the map such that [F∗(s) ·ϕ](F∗(s

′)) =
ϕ(F∗(s)F∗(s

′)) = ϕ(F∗(ss
′)). Thus, it is su�cient to observe that

ϕi(−) = Φ(F∗(x
p−1−i1
1 · · ·xp−1−in

n ) · −) = [F∗(x
p−1−i1
1 · · ·xp−1−in

n ) · Φ] ∈ F∗(S) · Φ. �

The map Φ is called the trace.

Proposition 5.11. Let (S,m) be either an F-�nite complete regular local ring with perfect
residue �eld k, or an F-�nite graded polynomial ring over a perfect �eld k. Let I ⊆ S be
an ideal, homogeneous in the second case, and let R = S/I. There is an isomorphism of
F∗(R)-modules:

Θ :
IF∗(S) :F∗(S) F∗(I)

IF∗(S)
// HomR(F∗(R), R)

F∗(s)
� // [F∗(s) · Φ] = Φ(F∗(s)−)

Proof. We only give a proof in the case when (S,m) is complete. The proof in the graded case
is completely analogous. If we let S/m = k, then we may assume that S = kJx1, . . . , xnK.
It is easy to see that Θ is F∗(S)-linear; moreover, since it maps F∗(I) to zero, it is also
F∗(R) ∼= F∗(S)/F∗(I)-linear.
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Now observe that if s ∈ (IF∗(S) :F∗(S) F∗(I)), then the S-linear map [F∗(s) · Φ] ∈
HomS(F∗(S), S) induces an R = S/I-linear map F∗(R) → R. To see this, it su�ces
to verify that [F∗(s) · Φ] maps F∗(I) into I. But this comes from our choice of s, since
F∗(s)F∗(I) ⊆ IF∗(S), and therefore

[F∗(s) · Φ](F∗(I)) = Φ(F∗(s)F∗(I)) ⊆ Φ(IF∗(S)) = IΦ(F∗(S)) ⊆ I,

where we used that Φ is S-linear. On the other hand, if F∗(s) ∈ IF∗(S), then Φ(F∗(s)F∗(S)) ⊆
IΦ(F∗(S)) ⊆ I, that is, Φ(F∗(s)−) induces the zero map. This shows that Θ is well-de�ned.
We now prove that Θ is surjective. Let ψ ∈ HomR(F∗(R), R). Since F∗(R) ∼= F∗(S)/F∗(I),

then ψ can be identi�ed with an S-linear map F∗(S)→ S/I that maps F∗(I) to zero. Con-
sider the short exact sequence 0→ I → S → S/I → 0. Apply the functor HomS(F∗(S),−)
to get an exact sequence

0 // HomS(F∗(S), I)→ HomS(F∗(S), S) // HomS(F∗(S), S/I) // Ext1
S(F∗(S), I).

Since S is regular, F∗(S) is a �nitely generated �at S-module by Kunz's Theorem 2.7, and
hence it is free. In particular, Ext1

S(F∗(S), I) = 0, and thus we conclude that ψ comes from
an S-linear map ϕ : F∗(S) → S which maps F∗(I) to I. By Lemma 5.10 we have that
ϕ = F∗(s) · Φ for some s ∈ S. We claim that F∗(s)F∗(I) ⊆ IF∗(S). If not, assume that
F∗(r) ∈ F∗(I) is such that F∗(s)F∗(r) = F∗(sr) /∈ IF∗(S). Using the notation of Lemma 5.10
we have that B = {F∗(xi11 · · ·xinn ) | i ∈ Λ} is an S-basis of F∗(S), and therefore we can write
F∗(sr) =

∑
i∈Λ siF∗(x

i1
1 · · ·xinn ) for some si ∈ S. By hypothesis, there is j ∈ Λ such that

sj /∈ I. Now consider r′ = rxp−1−j1
1 · · ·xp−1−jn

n , so that F∗(r′) is still an element of F∗(I).
Note that Φ(F∗(sr

′)) = Φ(sjx
p−1
1 · · ·xp−1

n ) = sj /∈ I. This contradicts the fact that [F∗(s) ·Φ]

maps F∗(I) to I.
Finally, to show that Θ is injective, assume that Φ(F∗(s)−) is the zero map, and by way

of contradiction suppose that F∗(s) /∈ IF∗(S). Repeating the same argument as above with
r = 1 we see that F∗(s) =

∑
i∈Λ siF∗(x

i1
1 · · ·xinn ), and there is j ∈ Λ such that sj /∈ I. If we

let r′ = xp−1−j1
1 · · ·xp−1−jn

n , then Φ(F∗(sr
′)) = Φ(sjx

p−1
1 · · ·xp−1

n ) = sj /∈ I, which contradicts
the fact that [F∗(s) · Φ] is the zero map. �

Remark 5.12. For practical purposes, it is more convenient to identify IF∗(S) and F∗(I) inside
F∗(S) with I [p] and I inside S. In this way, an R-linear map ψ : F∗(R)→ R corresponds to
a choice of an element s ∈ (I [p] :S I)/I [p], with ψ = Θ(F∗(s)) = [F∗(s) · Φ].

Remark 5.13. If k is an F-�nite �eld, S = kJx1, . . . , xnK, and I = (f) ⊆ m = (x1, . . . , xn),
then (I [p] :S I) = (fp−1). Thus, if we let R = S/(f), any R-linear map ψ : F∗(R) → R
corresponds to the choice of an element fp−1g ∈ S: more speci�cally, ψ = Φ(F∗(f

p−1g)−).
Moreover, such a map is zero if and only if g ∈ (f).

Example 5.14. Let S = F2Jx, y, zK, f = xz + y2 and R = S/(f). Consider the ele-
ment fy, and the corresponding Cartier map ψ = Φ(F∗(fy)−). Note that, for instance,
ψ(F∗(1)) = Φ(F∗(xyz+y3)) = Φ(F∗(xyz))+Φ(yF∗(y)) = 1+yΦ(F∗(y)) = 1, and ψ(F∗(xz)) =
Φ(F∗(x

2yz2)) + Φ(F∗(xy
3z)) = Φ(xzF∗(y)) + Φ(yF∗(xyz)) = xzΦ(F∗(y)) + yΦ(F∗(xyz)) = y.

The previous example is F-pure, since the map Φ(F∗(fy)−) is a splitting of R → F∗(R).
Recall that F-pure rings are reduced; however, there are integral domains which are not
F-pure.
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Example 5.15. Let S = F3Jx, yK, f = x2 − y3 and R = S/(f). Then fp−1 = f 2 =
x4 + x2y3 + y6. Note that f 2 ∈ m[3] = (x3, y3). In particular, for all g ∈ S we have that
Φ(F∗(f

2g)F∗(S)) ⊆ Φ(mF∗(S)) ⊆ mΦ(F∗(S)) ⊆ m. It follows that there is no surjective
Cartier map F∗(R)→ R, and therefore R cannot be F-pure, even if it is a domain.

Example 5.16. Let S = FpJx, y, zK, let I = (xy, xz, yz), and R = S/I. Note that (xyz)p−1 ∈
(I [p] :S I), and therefore ψ(−) = Φ(F∗((xyz)p−1)) is a Cartier map on R = S/I. Observe
that ψ(F∗(1)) = Φ(F∗((xyz)p−1)) = 1, and thus R is F-pure.

Theorem 5.17 (Fedder's criterion). Let (S,m) be either an F-�nite complete regular local
ring with perfect residue �eld k, or an F-�nite graded polynomial ring over a perfect �eld k.
Let I ⊆ S be an ideal, homogeneous in the second case. The ring R = S/I is F-pure if and
only if (I [p] :S I) 6⊆ m[p].

Proof. We only show the case in which S = kJx1, . . . , xnK, as the proof in the graded case is
analogous. We claim that it su�ces to show that, for a given s ∈ S, one has that s /∈ m[p] if
and only if Θ(F∗(s)) = [F∗(s) · Φ] is a surjective map. In fact, suppose we have proven this
claim. If R = S/I is F-pure, then there exists a splitting ψ : F∗(R) → R on the Frobenius
map, which is necessarily surjective. By 5.11 and Remark 5.12, we have that ψ = Θ(F∗(s)) for
some s ∈ (I [p] :S I), and by the claim s /∈ m[p]. It follows that (I [p] :S I) 6⊆ m[p]. Conversely,
if there exists s ∈ (I [p] :S I) r m[p], then the R-linear map ψ = Θ(F∗(s)) : F∗(R) → R is
surjective by the claim. It follows by Lemma 5.8 that R is F-pure.
We therefore prove the claim. Observe that, since S is local, Θ(F∗(s)) is surjective if and

only if its image is not contained in the maximal ideal m. If s ∈ m[p], then F∗(s) ∈ mF∗(S),
and therefore Φ(F∗(s)F∗(S)) ⊆ Φ(mF∗(S)) ⊆ mΦ(S) ⊆ m. Conversely, if s /∈ m[p], we can
�nd an element r ∈ S such that rs = (x1 · · · xn)p−1 + g, with g ∈ m[p]. It follows that
[F∗(s) ·Φ](F∗(r)) = Φ(F∗((x1 · · ·xn)p−1) + F∗(g)) = 1 + Φ(F∗(g)) ∈ 1 + Φ(mF∗(S)) ⊆ 1 + m,
as desired. �

Example 5.18. Let R = Fp[x1, . . . , xn] or R = FpJx1, . . . , xnK, and I be a monomial ideal.
We show that R/I is F-pure (equivalently, F-split) if and only if I is squarefree. The �only
if� direction is clear, since F-pure rings are reduced, and the quotient by a monomial ideal
is reduced if and only if the ideal is squarefree. Conversely, observe that the monomial
(x1 · · ·xn)p−1 always belongs to (I [p] :S I), because every minimal generator of I divides
x1 · · ·xn, and (x1 · · ·xn)p−1 /∈ m[p]. We then conclude by Fedder's criterion, Theorem 5.17.

Example 5.19. Let S = F7Jx, y, zK, let f = x3 + y3 + z3 and R = S/(f). If p = 7,
then the element fp−1 = f 6 contains the monomial x6y6z6 in its support, with non-zero
coe�cient. Thus, we can �nd λ ∈ Fp such that λf 6 = x6y6z6 +g, with g ∈ m[7] = (x7, y7, z7).
Consider the Cartier map ψ = Φ(F∗(λf

6)−); then ψ(F∗(1)) = Φ(F∗(x
6y6z6)) + Φ(F∗(g)) =

1 + Φ(F∗(g)) ∈ 1 + Φ(mF∗(S)) ⊆ 1 + m. It follows that ψ is surjective (in this case, one can
actually check that ψ(F∗(1)) = 1), and thus R is F-pure.
If instead of F7 we choose F5 as the base �eld, then the same argument does not work,

since fp−1 = f 4 ∈ m[5]. Fedder's criterion implies that R is not F-pure in this case.
In general, for f = x3+y3+z3 ∈ Sp = FpJx, y, zK with p > 3, one can show that fp−1 /∈ m[p]

if and only if p ≡ 1 mod 3.

Example 5.20. Let S = FpJx, y, zK, let f = xz − yn for n > 2, and R = S/(f). We have
already proved that R is weakly F-regular (in fact, F-regular), since it is a direct summand
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of a regular ring. To see that it is F-split, observe that fp−1 contains in its support the
monomial (xz)p−1 /∈ m[p]. It follows from Fedder's criterion, Theorem 5.17, that R is F-split.
If we consider the map ψ(−) = Φ(F∗(f

p−1yp−1)−) ∈ HomR(F∗(R), R), then one can check
that ψ(F∗(1)) = 1, so that ψ is a splitting of 1 7→ F∗(1). Observe that, more generally, we
can easily �nd maps ψj(−) = Φ(F∗(f

p−1yp−1−j)−) that split 1 7→ F∗(y
j) for all 0 6 j 6 p−1.

Fedder's criterion holds more generally for rings that are quotient of a regular local ring
(not necessarily complete with perfect residue �eld) or a graded quotient of a graded poly-
nomial ring over a �eld (not necessarily perfect). Moreover, the assumption that R is a
quotient of a regular ring is not very restrictive. This is clear when R is complete by Cohen's
structure theorem or when R is F-�nite by Gabber's Theorem 4.8.
We now turn our attention to strongly F-regular rings. We recall that we are always

assuming that R is F-�nite, even when we do not write it explicitly. We start with an
example

Example 5.21. Let S = FpJx, y, zK, let f = xz − yn for n > 2, and R = S/(f), as in
Example 5.20. We have already shown that we can �nd splittings of 1 7→ F∗(y

j) for all
0 6 j 6 p − 1. Clearly there is no hope to split the map 1 7→ F∗(y

p) = yF∗(1), since any
R-linear map ψ : F∗(R) → R will be such that ψ(yF∗(1)) = yψ(F∗(1)) ∈ (y). However,
we can split 1 7→ F 2

∗ (yp) (in fact, we will see that, in this ring, for every c 6= 0 there exists
e � 0 such that 1 7→ F e

∗ (c) splits). Along these lines, we now show that, for e � 0, one
can split 1 7→ F e

∗ (x) and, with a symmetric strategy, 1 7→ F e
∗ (z). Let e � 0 be such that

pe > n. Note that (xz)p
e−2yn appears with coe�cient pe − 1 = −1 6= 0 in the expansion

of fp
e−1, and therefore xp

e−2(yz)p
e−1 appears with the same coe�cient in the expansion of

g = −fp−1zyp
e−1−n. The map ψ(−) = Φe(F e

∗ (g)−) ∈ HomR(F e
∗ (R), R) is then such that

ψ(F e
∗ (x)) = Φe(F e

∗ (gx)) = Φe(F e
∗ ((xyz)p

e−1)) = 1. We will show that, in this ring R, for
e� 0 one can actually split 1 7→ F e

∗ (c) for any c 6= 0.

De�nition 5.22. An F-�nite ring R is said to be strongly F-regular if, for every c ∈ R◦,
there exists e > 0 such that the map R→ F e

∗ (R) sending 1 7→ F e
∗ (c) splits.

Some easy facts, that follow from the de�nitions and what we have proved so far are:
• Strongly F-regular are F-pure (choosing c = 1 in the de�nition). In particular, they
are reduced.
• If there exists c ∈ R◦ and e > 0 such that the map 1 7→ F e

∗ (c) splits, then R is F-pure.
In fact, the splitting is a surjective Cartier map, and R is F-pure by Lemma 5.8.
• If the map 1 7→ F e

∗ (c) splits for some e > 0, then 1 7→ F e′
∗ (c) splits for every e′ > e.

In fact, assume that 1 7→ F e
∗ (c) has a splitting ψe. Since R is F-pure, for every e′′ > 0

we have a splitting γe′′ of the map 1 7→ F e′′
∗ (1). For every e′ > e, we have that

F e′
∗ (R)

F e
′−e
∗ (ψe)

// F e′−e
∗ (R)

γe′−e
// R

F e′
∗ (c) // F e′−e

∗ (1) // 1

is a splitting of 1 7→ F e′
∗ (c).

The main reason why strong F-regular singularities were introduced by Hochster and
Huneke is to that, contrary to weak F-regularity, strong F-regularity localizes, as we will
show next. We �rst record a useful remark.

25



Remark 5.23. Let R be a ring, and M,N be �nitely generated R-modules. Given a multi-
plicatively closed system W and a map ψ ∈ HomRW (MW , NW ) ∼= (HomR(M,N))W , we can
�nd ϕ ∈ HomR(M,N) and w ∈ W such that ϕ = wψ. In particular, if R is an F-�nite ring
and W a multiplicatively closed system, then given a map ψ : F∗(RW )→ RW we can �nd a
map ϕ : F∗(R)→ R and an element w ∈ W such that ϕ = wψ.

Proposition 5.24. Let R be an F-�nite ring. The following are equivalent:

(1) R is strongly F-regular
(2) RW is strongly F-regular for every multiplicatively closed system W .
(3) RP is strongly F-regular for all P ∈ Spec(R).
(4) Rm is strongly F-regular for every maximal ideal m of R.

Proof. Let Min(R) = {P1, . . . , Ps}. First assume that R is strongly F-regular, and let W be
a multiplicatively closed system. Let c

w
∈ RW be an element not in any minimal prime of

RW . Assume that P1, . . . , Pt are the minimal primes of R which contain c, and Pt+1, . . . , Ps
are those which do not. Observe that P1, . . . , Pt cannot be minimal primes of RW , that is,
Pj ∩W 6= ∅ for any j = 1, . . . , t. If we pick c′ ∈ (Pt+1 ∩ . . . ∩ Ps) r (P1 ∪ . . . ∪ Pt), then the
image of c′ in RW is zero (since R is F-pure, hence reduced) and, in particular, c

w
= c+c′

w
in

RW . Moreover, because of our choice we have that c+c′ ∈ R◦. Since R is strongly F-regular,
there exists e > 0 such that the map R→ F e

∗ (R) sending 1 7→ F e
∗ (c+ c′) has a splitting, say

ψ, which induces a map ψW : F e
∗ (RW )→ RW sending F e

∗
(
c+c′

1

)
7→ 1

1
. The compositions

F e
∗ (RW )

·F e∗ (w)
// F e
∗ (RW )

ψW
// RW

F e
∗
(
c
w

)
= F e

∗
(
c+c′

w

)
// F e
∗
(
c+c′

1

)
// 1
1

give the desired splitting of the map RW → F e
∗ (RW ) sending 1

1
7→ F e

∗
(
c
w

)
.

The implications (2) ⇒ (3) ⇒ (4) are trivial. Now assume that Rm is strongly F-regular
for every maximal ideal m. Let c ∈ R◦, and for every maximal ideal m choose e(m) > 0

such that the map Rm → F
e(m)
∗ (Rm) sending 1

1
7→ F

e(m)
∗

(
c
1

)
splits. Let ψm be a splitting. By

Remark 5.23 there exists fm /∈ m and a map ϕm ∈ HomR(F
e(m)
∗ (R), R) such that fmψm =

ϕm. As a consequence, ϕm(F
e(m)
∗ (c)) = fm. Consider the ideal J = (fm | m maximal

ideal of R). Then J = R, since no maximal ideal of R contains it. Therefore, there exist
maximal ideals m1, . . . ,mn and elements r1, . . . , rn ∈ R such that

∑n
i=1 rifmi = 1. Let

e = max{e(m1), . . . , e(mn)}, and ei = e − e(mi). Since Rm is F-pure for all maximal ideals
m, it is F-pure by Proposition 5.7. We can then �nd splittings γei : F ei

∗ (R)→ R of the map
1 7→ F ei

∗ (1). Then we get compositions

F e
∗ (R)

F
ei
∗ (ϕmi )

// F ei
∗ (R)

·F ei∗ (fp
ei−1

mi
)

// F ei
∗ (R)

γei
// R

F e
∗ (c) // F ei

∗ (fmi)
// F ei
∗ (fp

ei

mi
) = fmiF

ei
∗ (1) // fmi

which we call δi. We �nally claim that δ =
∑n

i=1 riδi is the desired splitting. In fact, we
have that δ(F e

∗ (c)) =
∑n

i=1 rifmi = 1, as desired. �

We will now show that F-�nite regular rings are strongly F-regular, as a consequence of
Kunz's theorem, and that strongly F-regular rings are F-regular.
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Theorem 5.25. Let R be an F-�nite ring. If R is regular, then R is strongly F-regular.
If R is strongly F-regular, then it is F-regular; in particular, strongly F-regular rings are
Cohen-Macaulay and normal.

Proof. By Proposition 5.24 we may assume that (R,m) is local. By Kunz's Theorem, F e
∗ (R)

is a �at R-module for every integer e > 0, �nitely generated by assumption. Therefore F e
∗ (R)

is projective, and hence free, since R is local. Let c ∈ R◦, and let e� 0 such that c /∈ m[pe].
Then F e

∗ (c) /∈ mF e
∗ (R), that is, F e

∗ (c) is a minimal generator of F e
∗ (R), by Nakayama's

lemma. Since F e
∗ (R) is free, F e

∗ (c) can actually be made into part of a basis. Thus, we may
de�ne a n R-linear map F e

∗ (R) → R which sends F e
∗ (c) to 1 and every other basis element

to any element of R; for instance, to zero. This is the desired splitting of 1 7→ F e
∗ (c).

For the second claim, thanks to Proposition 5.24, it su�ces to show that every ideal of
a strongly F-regular ring is tightly closed. To prove this, we repeat the argument that we
sketched at the beginning of the section: if I ⊆ R is an ideal, and x ∈ I∗, then there
exists c ∈ R◦ such that F e

∗ (c)x ∈ IF e
∗ (R) for all e � 0. But for e � 0 we can �nd ψ ∈

HomR(F e
∗ (R), R) such that ψ(F e

∗ (c)) = 1. It follows that x = ψ(F e
∗ (c)x) ∈ ψ(IF e

∗ (R)) ⊆ I.
Since every F-�nite ring is the homomorphic images of a regular ring by 4.8, strongly

F-regular rings are Cohen-Macaulay and normal by Proposition 3.5 and Theorem 3.7. �

The next result is an extension of Proposition 3.9.

Proposition 5.26. Let R ⊆ S be F-�nite domains such that R is a direct summand of S.
If S is strongly F-regular, then R is strongly F-regular.

Proof. We �x a c ∈ R◦ ⊆ S◦ = S \ {0}. Since S is strongly F-regular, there exists e > 0
and an S-linear map ψe : F e

∗ (S) → S which is a splitting for the map S → F e
∗ (S) sending

1 7→ F e
∗ (c), that is ψe(F

e
∗ (c)) = 1. Let ρ : S → R be a splitting for the inclusion R ⊆ S.

Then the composition ρ◦ψe : F e
∗ (S)→ R is an R-linear map sending F e

∗ (c) 7→ 1. Restricting
this map to F e

∗ (R) yields an R-linear splitting F e
∗ (R)→ R such that F e

∗ (c) 7→ 1. Therefore,
R is strongly F-regular. �

The previous result allows us to construct many examples of strongly F-regular rings.

Example 5.27. Let k be an F-�nite �eld of characteristic p > 0.

(1) We consider a power series ring S = kJx1, . . . , xdK and a �nite group G acting linearly
on S such that p - |G|. As we saw in Example 3.10, R is a direct summand of S, which
is regular (so strongly F-regular by Theorem 5.25), hence R is strongly F-regular as
well. In particular, all rings of Example 3.10 are also strongly F-regular.

(2) Let R = k[x, y, u, v]/(xy − uv). Then R ∼= k[a, b]#k[c, d] ∼= k[ac, bd, ad, bc] is a direct
summand of S = k[a, b, c, d]. Therefore, R is strongly F-regular. More generally,
Segre products of polynomial rings are strongly F-regular.

Another way to see that Example 5.27 (2) is strongly F-regular is given by the following
very useful result.

Proposition 5.28. Let R be an F-�nite ring, and c ∈ R◦. If Rc is strongly F-regular and
there exists e0 > 1 such that the map R → F e0

∗ (R) sending 1 7→ F e0
∗ (c) splits, then R is

strongly F-regular.
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Proof. Observe that R is F-split by Lemma 5.8 (4). Let d ∈ R◦; since Rc is strongly F-
regular, and d ∈ (Rc)

◦, there exists e′ > 0 and an Rc-linear map F e′
∗ (Rc) → Rc sending

F e
′
∗ (d)
1
7→ 1

1
. By Remark 5.23, there exists N > 0 and a map γ : F e′

∗ (R) → R sending
F e′
∗ (d) 7→ cN .
Let ϕe denote the splitting of 1 7→ F e

∗ (1). For e > 0, since F e′
∗ (ϕe) is F e′

∗ (R)-linear, it
sends F e+e′(dp

e
) = F e′

∗ (d) · F e+e′
∗ (1) to F e′

∗ (d). De�ne γe+e′ as the following composition

F e+e′
∗ (R)

·F e+e
′

∗ (dp
e−1)
// F e+e′
∗ (R)

F e
′
∗ (ϕe)

// F e′
∗ (R) // R

F e+e′
∗ (d) � // F e+e′

∗ (dp
e
) � // F e′

∗ (d) � // cN

Relabeling, this gives a set of maps γe ∈ HomR(F e
∗ (R), R) such that γe(F e

∗ (d)) = cN for all
e > e′.
In a similar way, since F e0

∗ (ϕe) is F e0
∗ (R)-linear, it sends F e+e0(cp

e
) = F e0

∗ (c) · F e+e0
∗ (1) to

F e0
∗ (c). In particular, for all pe > N , if we de�ne by δe+e0 the composition

F e+e0
∗ (R)

·F e+e0∗ (cp
e−N )

// F e+e0
∗ (R)

F
e0
∗ (ϕe)

// F e0
∗ (R) // R

F e+e0
∗ (cN) � // F e+e0(cp

e
) � // F e0

∗ (c) � // 1

then relabeling this gives a set of maps δe ∈ HomR(F e
∗ (R), R) such that δe(F e

∗ (c
N)) = 1 for

all e > e0 such that pe > N . For e� 0, we can therefore consider the map ψ = δe ◦F e
∗ (γe) ∈

HomR(F 2e
∗ (R), R), which is such that ψ(F 2e

∗ (d)) = δe(F
e
∗ (c

N)) = 1. �

Example 5.29. Let S = F3[X], where X =

[
x v
u y

]
, and let R = S/(det(X)), as in Example

5.27 (2). By Fedder's criterion, an R-linear map ϕ : F∗(R) → R corresponds to an element
in (det(X)[3] :S det(X)) = (det(X)2) = (x2y2 + xyuv + u2v2). Consider the element α =
yuv det(X)2, and the map ϕ(−) = Φ(F∗(α)−). One can readily check that ϕ(F∗(x)) = 1,
and therefore ϕ splits the map 1 7→ F∗(x). Since

Rx
∼=

F3[x, y, u, v, x−1]

(y − uvx−1)
∼= F3[x, u, v]x

is regular, hence strongly F-regular, the ring R is strongly F-regular by Proposition 5.28.

6. F-injectivity and F-rationality

6.1. A short recap on local cohomology. We brie�y recall a few ways to de�ne local
cohomology modules supported at an ideal. Let R be a ring, and I ⊆ R be an ideal,
generated by x1, . . . , xt. Let M be an R-module. The i-th local cohomology module of M
with support in I, denoted, H i

I(M), can be equivalently de�ned in one of the following ways:

(1) The �ech complex

�
•

: 0 // M
∂0
//
⊕t

i=1 Mxi
∂1
//
⊕

i<jMxixj
// . . . // Mx1···xt

// 0
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is the complex whose maps are (up to sign) just the natural localization maps. For
instance, if t = 2, then

∂0(m) =
(m

1
,
m

1

)
∈Mx1 ⊕Mx2 ,

and

∂1

(
m1

xa1
,
m2

xb2

)
=
m1

xa1
− m2

xb2
=
m1x

b
2 −m2x

2
1

xa1x
b
2

∈Mx1x2 .

One can check that, with appropriate choices of sign, the one above is indeed a
complex. Then H i

I(M) = H i(�
•
).

(2) For every N let K•N = K•(xN1 , . . . , x
N
t ) be the Koszul complex on xN1 , . . . , x

N
t . There

the direct limit lim
n→∞

(
K•1 → K•2 → . . . K•n → K•n+1 → . . .

)
= K•∞ coincides with the

�ech complex �
•
, so that H i

I(M) = H i(K•∞ ⊗RM). For example, for t = 2:

0

��

0

��

0

��

. . . // M

xn1
xn2


��

M //

xn+1
1

xn+1
2


��

. . . M

��

. . . // M⊕2

x1 0
0 x2


//

[
xn2 −xn1

]
��

M⊕2 //

[
xn+1

2 −xn+1
1

]
��

. . . Mx1 ⊕Mx2

��

. . . // M
·x1x2

//

��

M //

��

. . . Mx1x2

��

0 0 0

(3) The surjections . . . → R/In+1 → R/In → . . . → R/I2 → R/I induce maps
ExtiR(R/I,M) → ExtiR(R/I2,M) → . . .ExtiR(R/In,M) → ExtiR(R/In+1,M) → . . .
(not necessarily injections). Then H i

I(M) = lim
n→∞

ExtiR(R/In,M).

(4) Let ΓI(−) be the left-exact covariant I-torsion functor, de�ned as ΓI(M) =
⋃
N(0 :M

IN). Then H i
I(M) is the i-th right derived functor of ΓI(−).

Remark 6.1. Let I = (x1, . . . , xt) be an ideal of R and let M be an R-module.

• If follows immediately from the last two de�nitions of H i
I(M) that this module only

depends on the radical of the ideal I, i.e., H i
I(M) ∼= H i√

I
(M).

• It follows from the �rst de�nition that H i
I(M) = 0 for all i > t+ 1 and

H t
I(M) = Mx1···xt/

t∑
i=1

Im
(
Mx1···xi−1xi+1···xt

)
.
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6.2. F-injectivity. If ϕ : R → S is a ring homomorphism, and I = (x1, . . . , xt) ⊆ R is
an ideal, then there is a natural map �

•
(x1, . . . , xt;R) → �

•
(ϕ(x1), . . . , ϕ(xt);S), which

gives a map on local cohomology modules: H i
I(ϕ) : H i

I(R)→ H i
IS(S), where we notice that

IS = (ϕ(x1), . . . , ϕ(xt))S. In our case of interest, we will consider a local ring (R,m), the
Frobenius map F : R → R, and I = m. Note that F (m)R = m[p] has the same radical
as m. Therefore H i

m[p](R) ∼= H i
m(R). This fact, together with the previous discussion, gives

Frobenius maps H i
m(F ) : H i

m(R) → H i
m(R) on local cohomology modules. If no confusion

arises, we will denote each map H i
m(F ) still by F .

Even if R is reduced, that is, F is injective, there is no guarantee that F is injective on
H i

m(R).

Example 6.2. Consider the one-dimensional local domain R = F5Jx, yK/(x2−y3). Since R is
Cohen-Macaulay, the only non-vanishing local cohomology module isH1

m(R). Moreover, since√
(x) = m, we can compute it using the �ech complex on x, thus we obtain H1

m(R) ∼= Rx/R.

Note that η =
[
y2

x

]
6= 0 in H1

m(R): otherwise, there would exist r ∈ R such that y2

x
= r

1
and,

since R is a domain, it would immediately follow that y2 ∈ (x) inside R. But this is clearly
false. However, note that F (η) =

[
y10

x5

]
= 0, since y10 = y(y3)3 = y(x2)3 ∈ (x5) in R.

De�nition 6.3. A local ring (R,m) is said to be F-injective if the Frobenius map F :
H i

m(R)→ H i
m(R) is injective for every i. A ring R is F-injective if Rm is F-injective for every

maximal ideal m of R.

Since H i
m(R) ∼= H i

m̂(R̂), and the Frobenius map is the same whether we consider the local
cohomology as a module over R or over R̂, we immediately have that R is F-injective if and
only if R̂ is F-injective.

Remark 6.4. If (R,m) is an F-injective ring of positive dimension, then H0
m(R) = 0. Other-

wise, there would exists 0 6= r ∈ m such that mNr = 0 for N � 0. However, F : H0
m(R) →

H0
m(R) is injective, and thus F e(r) 6= 0 for all e > 0. But then F e(r) = rp

e ∈ mpe−1r = 0 for
e� 0, a contradiction.

Proposition 6.5. Let R be an F-pure ring, then R is F-injective.

Proof. Both notions are local at maximal ideals, so we can assume without loss of generality
that (R,m) is local. We prove the statement only in the case when R is F-�nite. By
Corollary 5.5, R is F-split, so there exists a splitting ρ : F∗(R) → R such that ρ ◦ F = idR,
where F : R → F∗(R) is the Frobenius homomorphism. The map ρ induces a natural map
on local cohomology modules H i

m(ρ) : H i
m(R)→ H i

m(R) for any i. By functoriality, this map
is such that H i

m(ρ) ◦ H i
m(F ) = idHi

m(R). So the map H i
m(F ) = F : H i

m(R) → H i
m(R) splits,

hence it is injective. �

We are going to prove that F-injectivity localizes. To do so, we need local duality, which
we brie�y recall here. For more details, see for instance [BS13].
Let (S, n) be a complete Gorenstein local ring of dimension d (of any characteristic). We

denote by ES(S/n) the injective hull of the residue �eld S/n, that is the smallest injective
module containing S/n. Equivalently, ES(S/n) is an injective S-module and an essential
extension of S/n, i.e., for any submodule H of ES(S/n), if H ∩ S/n = 0 then H = 0.
The injective hull of S/n exists and is unique up to isomorphism. The functor (−)∨ =
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HomS(−, ES(S/n)) on the category of S-modules is called Matlis dual functor. It gives
isomorphisms

H i
n(M)

∨ ∼= Extd−iS (M,S),

for any 0 6 i 6 d and any �nitely generated S-module M . When (R,m, k) is a com-
plete Cohen-Macaulay local ring of dimension d with canonical module ωR, and M is a
�nitely generated R-module, Matlis duality gives rise to the following isomorphisms known
as Grothendieck's local duality (see [BH93, Theorem 3.5.8]):

H i
m(M) ∼= HomR(Extd−iR (M,ωR), E(k)), and

ExtiR(M,ωR) ∼= HomR(Hd−i
m (M), E(k)).

The last isomorphism with M = R and i = 0 yields the fact that the Matlis dual of the
top-dimensional local cohomology module of the ring is isomorphic the canonical module:

Hd
m(R)

∨ ∼= HomR(R,ωR) ∼= ωR.

Proposition 6.6. Let (R,m) be an F-�nite F-injective local ring. Then RW is F-injective
for every multiplicatively closed system W . In particular, R is reduced.

Proof. By de�nition, F-injectivity is tested locally at maximal ideals. So to prove that RW

is F-injective it is enough to prove that (RW )m is F-injective for any maximal ideal m of
RW . But any prime ideal of RW is just a prime ideal P of R that does not intersect W ,
so (RW )m ∼= RP . Therefore we may assume without loss of generality that W = R r P for
some P ∈ Spec(R), and prove that RP is F-injective. We show that we can also assume that
R is complete. Clearly, R F-injective implies R̂ F-injective. Let P ∈ Spec(R) and choose
a minimal prime Q of PR̂ such that dimRP = dim R̂Q. The local ring map RP → R̂Q is
faithfully �at. Moreover, notice that PR̂Q and QR̂Q have the same radical. Therefore we
obtain an isomorphism in local cohomology H i

QR̂Q
(R̂Q) ∼= H i

PRP
(RP )⊗RP R̂Q for all i which

is compatible with the Frobenius action. Thus, if the Frobenius is injective on H i
QR̂Q

(R̂Q),

i.e., if R̂Q is F-injective, then it is also injective on H i
PRP

(RP ), i.e., RP is F-injective.
As explained above, now we assume that (R,m) is a complete local ring, P ∈ Spec(R)

and we prove that RP is F-injective. By Cohen's Structure Theorem, there exists an n-
dimensional regular local ring (S, n) such that R = S/I for some ideal I ⊆ S. Let Q be
the lift of P to S. By local duality, we have isomorphisms H i

m(R)
∨ ∼= Extn−iS (R, S), where

(−)∨ = HomS(−, ES(S/n)) is the Matlis dual functor. Let us view the Frobenius map
F : H i

m(R) → H i
m(R) as an R-linear map ϕ : H i

m(R) → H i
m(F∗(R)). Then, this map is

injective if and only if its Matlis dual

ϕ∨ : Extn−iS (F∗(R), S)→ Extn−iS (R, S)

is surjective. Therefore, if R is F-injective then ϕ∨ : Extn−iS (F∗(R), S) → Extn−iS (R, S) is
surjective for all i, and therefore F∨ : (Extn−iS (F∗(R), S))Q → (Extn−iS (R, S))Q is surjective
for every i. Since localization is �at, we have that (Extn−iS (R, S))Q ∼= Extn−iSQ

(RQ, SQ);
moreover, since R is F-�nite, we have that (Extn−iS (F∗(R), S))Q ∼= Extn−iSQ

(F∗(R)Q, SQ) ∼=
Extn−iSQ

(F∗(RQ), SQ). Note that clearly RQ
∼= RP . To conclude the proof of the �rst part,
31



observe that SQ is again a regular local ring; applying local duality over SQ we conclude that

ϕ : H
dimSQ−n+i
PRP

(RP )→ H
dimSQ−n+i
PRP

(F∗(RP ))

is injective for all i, that is, (RP , PRP ) is F-injective. Observe that, in order for the isomor-
phism Extn−iSQ

(RQ, SQ)
∨ ∼= H

dimSQ−n+i
PRP

(RP ) to hold, it is not required that SQ and RP are
complete.
Finally, to see that R is reduced, observe �rst of all that F-injective rings have no embedded

primes. If P was an embedded prime, then RP would be an F-injective ring of positive
dimension such that H0

PRP
(RP ) 6= 0, which would contradict Remark 6.4. Moreover, if P ∈

Min(R), then since RP is F-injective we have that Frobenius is injective on H0
PRP

(RP ) = RP .
Therefore RP is reduced for every minimal prime of R, that is, RP is a �eld. Now, if we
consider an irredundant primary decomposition (0) = Q1 ∩ . . .∩Qt, then we have that each
Qi corresponds to a minimal prime Pi and, since RPi is a �eld, we have that QiRPi = PiRPi .
Since Qi is Pi-primary, it follows at once that Qi = Pi for all i, and R is reduced. �

6.3. F-rationality. Now, we introduce the last notion of F-singularity we are going to study.

De�nition 6.7. A local ring (R,m) of dimension d is said to be F-rational if it is Cohen-
Macaulay, and for every c ∈ R◦ there exists an integer e > 0 such that the map cF e :
Hd

m(R) → Hd
m(R) is injective. A ring R is F-rational if Rm is F-rational for every maximal

ideal m of R.

It is clear that F-rational rings are F-injective. Using this observation, it also becomes
clear that a Cohen-Macaulay ring R is F-rational if and only if for every c ∈ R◦ the map
cF e : Hd

m(R)→ Hd
m(R) is injective for all e� 0. In fact, if it is injective for one single e > 0,

then for e′ > e the map cF e′ is obtained as the composition of the injective maps cF e ◦F e′−e,
where F e′−e is injective since R is F-injective.

6.3.1. F-rationality and tight closure. The original de�nition of F-rationality requires that
every ideal generated by a system of parameters (even partial) is tightly closed. We now
show that this is equivalent to the one given above for rings that are the homomorphic image
of a Cohen-Macaulay ring.
We �rst discuss some facts about the top local cohomology modules.
Using the K•∞ de�nition of local cohomology, and using the right exactness of direct limits,

one can see that if I = (x1, . . . , xt), and x = x1 · · ·xt, then H t
I(M) is the direct limit of the

system

M/(x1, . . . , xt)M
·x−→M/(x2

1, . . . , x
2
t )M

·x−→M/(x3
1, . . . , x

3
t )M −→ . . .

When x1, . . . , xd is a full system of parameters, i.e., a system of parameters such that
I = (x1, . . . , xd) is an m-primary ideal, then thanks to the above an element η ∈ Hd

m(R) can
be seen as a class

[
r
xt

]
for some t > 0 and r ∈ R, where x = x1 · · · xd. In this way, η = 0 if and

only if r
xt

maps to zero in the direct limit as above, if and only if xnr ∈ (xn+t
1 , . . . , xn+t

d ) for
some (equivalently, all) n� 0, if and only if r ∈ (xn+t

1 , . . . , xn+t
d ) :R x

n for some (equivalently,
all) n � 0. Note that, when R is Cohen-Macaulay, this is equivalent to r ∈ (xt1, . . . , x

t
d),

since x1, . . . , xd forms a regular sequence.
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Finally, when R has characteristic p, one can readily check that the Frobenius map F :
Hd

m(R)→ Hd
m(R) is such that F (η) = F

([
r
xt

])
=
[
rp

xtp

]
. Therefore, if R is Cohen-Macaulay,

cF e(η) = 0 is equivalent to crp
e ∈ (xtp

e

1 , . . . , xtp
e

d ).
For the reader's convenience, we collect the previous observations in the following lemma.

Lemma 6.8. Let (R,m) be a local ring of dimension d, let x1, . . . , xd be a full system of
parameters, let x = x1 · · ·xd, and let η =

[
r
xt

]
∈ Hd

m(R) for r ∈ R and t > 0. Then the
following facts holds.

(1) F (η) =
[
rp

xtp

]
.

(2) η = 0 if and only if r ∈ (xn+t
1 , . . . , xn+t

d ) :R x
n for some (equivalently, all) n� 0.

(3) If R is Cohen-Macaulay, then η = 0 if and only if r ∈ (xt1, . . . , x
t
d).

Theorem 6.9. Let (R,m) be a local ring of dimension d which is the homomorphic image of
a Cohen-Macaulay ring. Then R is F-rational if and only if every ideal (x1, . . . , xt) generated
by a system of parameters is tightly closed.

Proof. First assume d = 0. If R is F-rational, then R is a �eld, since H0
m(R) = R and

F : R→ R is injective. Thus the only proper ideal is (0), and it is tightly closed. Conversely,
if the only ideal generated by a system of parameters (i.e., (0)) is tightly closed, then R is
reduced, and thus it is a �eld. So R is F-rational.
Now assume d > 0. Assume thatR is F-rational, let I = (x1, . . . , xd) be any ideal generated

by a full system of parameters, and let x = x1 · · ·xd. If r ∈ R is such that crq ∈ I [q] for some
c ∈ R◦ and all q = pe � 0, then the element η =

[
r
x

]
is such that cF e(η) = 0 in Hd

m(R) for all
e� 0. Since R is F-rational, we conclude that η = 0, that is, r ∈ I, and thus I = I∗. Now
let x1, . . . , xt be any system of parameters, and complete it to a full system of parameters:
x1, . . . , xt, xt+1, . . . , xd. For all N > 1 we have that

(x1, . . . , xt)
∗ ⊆ (x1, . . . , xt, x

N
t+1, . . . , x

N
d )∗ = (x1, . . . , xt, x

N
t+1, . . . , x

N
d ),

and therefore (x1, . . . , xt)
∗ ⊆

⋂
N>1(x1, . . . , xt) + (xNt+1, . . . , x

N
t ) = (x1, . . . , xt).

Conversely, assume that every ideal generated by a system of parameters is tightly closed,
and observe that R is Cohen-Macaulay by colon capturing, Theorem 3.6. First, we show
that R is F-injective. If η =

[
r
xt

]
∈ Hd

m(R) is such that F (η) =
[
rp

xtp

]
= 0, then we have that

rp ∈ (xt1, . . . , x
t
d)

[p], and this implies that rq ∈ (xt1, . . . , x
t
d)

[q] for all q = pe. In particular,
r ∈ (xt1, . . . , x

t
d)
∗ = (xt1, . . . , x

t
d), and therefore η = 0.

Now, let c ∈ R◦, and for e > 0 de�ne Ne = ker(cF e). We claim that each Ne is an
R-module, and Ne+1 ⊆ Ne for all e > 0. Clearly each Ne is an Abelian group. If r ∈ R and
η ∈ Ne, then cF e(rη) = rp

e
cF e(η) = 0, and thus rη ∈ Ne. If η ∈ Ne+1, then F (cF e(η)) =

cpF e+1(η) = 0. Since R is F-injective, it follows that cF e(η) = 0, and thus η ∈ Ne. We have
a descending chain of R-submodules of Hd

m(R):

N1 ⊇ N2 ⊇ N3 . . . ⊇ Ne ⊇ Ne+1 ⊇ . . .

which must eventually stabilize because Hd
m(R) is Artinian. Let e0 be such that Ne = Ne0

for all e > e0. If Ne0 6= 0, that is, there exists 0 6= η ∈ Hd
m(R) such that cF e0(η) = 0, then

by what we have shown above we have that cF e(η) = 0 for all e > e0. If we write η =
[
r
xt

]
,

then this means that crq ∈ I [q] for all q � 0, where I = (xt1, . . . , x
t
d). Since I is tightly closed

by assumption, we have that r ∈ I, so that η = 0. This shows that Ne0 = 0, so that cF e0 is
injective . As c ∈ R◦ was arbitrary, it follows that R is F-rational. �
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Corollary 6.10. Let (R,m) be a local ring which is the homomorphic image of a Cohen-
Macaulay ring. If R is weakly F-regular, then it is F-rational. Moreover, if R is F-rational,
then it is a normal domain.

Proof. The �rst claim follows immediately from Theorem 6.9. For the second, observe that
the proof of Proposition 3.5 that weakly F-regular rings are normal only requires that (0)
and ideals generated by a single regular element are tightly closed, which is still true if R is
F-rational. �

Examples 6.11. It follows from Corollary 6.10 that all weakly (and strongly) F-regular rings
of Examples 3.10 and 5.27 are also F-rational. An example of non F-rational singularity is
given by the following ring from Example 1.19. Let R = Fp[x, y, z]/(x2 − y5 − z7), then the
ideal generated by parameters (y, z) is not tightly closed, since x ∈ (y, z)∗ \ (y, z). Therefore
R is not F-rational.

One may wonder whether, similarly to weakly and strongly F-regular, a direct summand
of an F-rational or F-injective ring is still F-rational or F-injective. This is false in general,
an example has been constructed by Watanabe. We record the example here, but we refer
the reader to [MP21, Remark 9.4] or to the original [Wat97] for details and proofs.

Example 6.12. Let R = F3[x, y, z]/(x2+y3+z5) with grading deg(x) = 15, deg(y) = 10, and
deg(z) = 6. Then R is a two-dimensional normal domain which is a direct summand of an
F-rational ring. However, R is not F-injective. In fact, the cohomology class

[
x
yz

]
∈ H2

m(R)

is nonzero, but

F

([
x

yz

])
=

[
x3

y3z3

]
= 0,

since x3 ∈ (y3, z3)R. On the other hand, if we consider T = Fp[x, y, z]/(x2 + y3 + z5)
where p > 5 is a prime number, it is well known that T is isomorphic to the invariant ring
T ∼= Fp[u, v]I known as E8-singularity. Here, I ⊆ GL(2,Fp) is the binary icosahedral group
of order 120. In particular, T is strongly F-regular and so also F-rational.

We saw that a local ring (R,m) is F-injective if and only if R̂ is F-injective. One may
wonder whether the same is true for F-rational as well. One direction is easy. Namely,
assume that R̂ is F-rational and I is an ideal of R generated by a system of parameters.
Since R→ R̂ is a faithfully �at ring extension, by Proposition 2.8 we have

I∗ = (I∗R̂) ∩R ⊆ (IR̂)∗ ∩R = (IR̂) ∩R = I.

Therefore I is tightly closed, and R is F-rational. The implication R F-rational ⇒ R̂ F-
rational holds if R is F-�nite (or more generally if R is excellent). We record here the result
without proof (for a proof see [BH93, Corollary 10.3.19] or [MP21, Theorem 6.16]).

Theorem 6.13. Let (R,m) be a local F-�nite ring. Then R is F-rational if and only if R̂ is
F-rational.

6.3.2. F-rationality localizes. Now, we show that F-rationality localizes. While this can
be proved using the local cohomology de�nition using a strategy similar to that of Proposi-
tion 6.6, we will show it by proving the more general fact that tight closure of ideals generated
by regular sequences commutes with localization.
We start with a lemma.
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Lemma 6.14. Let R be a Noetherian ring, I ⊆ R be an ideal, and W be a multiplicatively
closed system. There exists s ∈ W such that, for all m > 1, we have⋃

w∈W

(Im :R w) = (Im :R s
m).

Proof. Let G = grI(R) =
⊕

n>0 I
n/In+1 be the associated graded ring of R with respect to I,

which is a Noetherian ring. Consider the set S = {annG(w) | w ∈ W}. SinceG is Noetherian,
S has a maximal element annG(s), for some s ∈ W . In particular, annG(s) = annG(sw) for
all w ∈ W , by maximality. Let m > 1, and x ∈

⋃
w∈W (Im :R w), so that wx ∈ Im for some

w ∈ W . Let t > 0 be such that x ∈ I t r I t+1. If t > m, then clearly x ∈ Im ⊆ (Im :R s
m).

Otherwise, swx = 0 in G implies that x ∈ annG(sw) = annG(s), so that sx = 0 in G. This
implies that sx ∈ I t+1. Repeating the argument with sx in place of x, eventually yields that
smx ∈ Im, as desired. �

Corollary 6.15. Let R be a Noetherian ring of characteristic p, and I be an ideal generated
by a regular sequence of x1, . . . , xd. Let s be as Lemma 6.14. Then⋃

w∈W

(I [q] :R w) = (I [q] :R s
(d+1)q).

Proof. Let x ∈ I [q] :R w for some w ∈ W . We prove by induction on n > 0 that yn =
sq+nx ∈ I [q] + Iq+n. The case n = 0 follows from Lemma 6.14, since sqx ∈ Iq. Now
assume that yn ∈ I [q] + Iq+n. Since wyn = sq+nwx ∈ I [q], we can write wyn =

∑d
i=1 rix

q
i .

By induction we also have wyn =
∑d

i=1wsix
q
i +

∑
αwrαx

α, where α = (α1, . . . , αd) ∈ Nd

is such that
∑d

i=1 αi > q + n, and 0 6 αi < q for all i. We may assume that among
the monomials xα appearing in the above writing there are no repetitions. Putting the
above relations together we obtain that

∑
αwrαx

α =
∑d

i=1(ri − wsi)x
q
i ∈ I [q]. Since the

elements x1, . . . , xd form a regular sequence, and each monomial xα = xα1
1 · · ·x

αd
d does not

belong to I [q], we obtain that each wrα ∈ I. It follows that srα ∈ I for all α, and thus
yn+1 = syn =

∑d
i=1 ssix

q
i +

∑
α srαx

α ∈ I [q] + IIq+n = I [q] + Iq+n+1, as desired. Finally,
since I is generated by d elements, it is easy to see that Id(q−1)+1 ⊆ I [q], by the pigeon hole
principle. It follows that ydq = s(d+1)qx ∈ I [q] + I(d+1)q ⊆ I [q], which concludes the proof that
x ∈ (I [q] :R s

(d+1)q). �

Theorem 6.16. Let R be a ring of characteristic p > 0, and x1, . . . , xd be a regular sequence.
Let I = (x1, . . . , xd), and W be a multiplicatively closed system. Then I∗RW = (IRW )∗. In
particular, if R is an F-rational ring, then RW is F-rational for every multiplicatively closed
system W .

Proof. We prove the �rst claim. Without loss of generality we may assume that IRW 6= RW ,
otherwise the equality is trivial. We have already observed that I∗RW ⊆ (IRW )∗ always
holds. For the converse, let x

w
∈ RW be such that c

w′
xq

wq
∈ I [q]RW for some c

w′
∈ (RW )◦ and

all q = pe � 0. Let s ∈ W be as in Lemma 6.14, so that
⋃
w∈W (I [q] :R w) = (I [q] :R s

(d+1)q)

for all q = pe. By prime avoidance, we may �nd c′ ∈ R◦ such that c′

1
= c

1
in RW . By

clearing denominators, we can �nd w(q) ∈ W such that w(q)c′xq ∈ I [q] for all q � 0. By
Corollary 6.15, we have that s(d+1)qc′xq = c′(sd+1x)q ∈ I [q] for all q � 0, from which we get
that sd+1x ∈ I∗. It follows that x

w
∈ I∗RW , as desired.
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The proof of the second claim now follows from the �rst. In fact, if R is F-rational, then
it is Cohen-Macaulay, and so is every localization at a multiplicatively closed system W . By
de�nition, F-rationality is tested locally at maximal ideals; therefore, by the same argument
of the proof of Proposition 6.6 without loss of generality we may assume that W = R r P
for some P ∈ Spec(R). If x1, . . . , xd ∈ R are such that their images in RP form a system of
parameters, then they are also a system of parameters in R, and hence a regular sequence.
We have shown above that ((x1, . . . , xd)RP )∗ = (x1, . . . , xd)

∗RP = (x1, . . . , xd)RP , where
the last equality follows from Theorem 6.9 and our assumption that R is F-rational. This
proves that ideals generated by arbitrary system of parameters in RP are tightly closed, and
therefore RP is F-rational, again by Theorem 6.9. �

6.3.3. Smith's characterization of F-rationality. Now, we give a third characterization of F-
rationality in terms of local cohomology due to Karen Smith. This is crucial for the geometric
interpretation of F-rationality, and we will also use it to prove the so called deformation
property.

De�nition 6.17. Let (R,m) be a local ring and let N ⊆ H i
m(R) be an R-submodule. We

say that N is F-stable if F (N) ⊆ N , where F : H i
m(R)→ H i

m(R) is the Frobenius action on
local cohomology.

Theorem 6.18 (Smith). Let (R,m) be an F-�nite local ring of dimension d. Then the
following are equivalent:

(1) R is F-rational.
(2) R is Cohen-Macaulay and Hd

m(R) has no proper nonzero F-stable submodule.

Proof. We recall that local cohomology commutes with completion, and moreover the Frobe-
nius structure onHd

m(R) is una�ected when passing to the completion. So by this observation
and by Theorem 6.13, we can assume without loss of generality that (R,m) is complete.
First, assume that (1) holds, i.e., R is F-rational. Let N ( Hd

m(R) be an F-stable sub-
module. By local duality, we obtain an epimorphism Hd

m(R)
∨ ∼= ωR → N∨ → 0. Since R

is a normal domain (Corollary 6.10), ωR is torsionfree of rank 1. Therefore N∨, and thus
N , is a torsion module. Hence, there exists c 6= 0 such that c · N = 0. If N 6= 0, then take
any nonzero η = [a

x
] ∈ N , where x is a system of parameters for R. Since N is F-stable,

F (N) ⊆ N , thus cF e(η) = [ ca
pe

xpe
] = 0 for any e > 0, contradicting the injectivity of the map

cF e : Hd
m(R)→ Hd

m(R). Hence N = 0.
Conversely, assume that (2) holds. We observe that R is F-injective, otherwise the kernel

of the Frobenius F : Hd
m(R) → Hd

m(R) would be a nonzero proper F-stable submodule of
Hd

m(R). Now, take c ∈ R◦ and consider the module

Tc = {η ∈ Hd
m(R) | cF e(η) = 0 ∀e > 0}.

It is easy to check that Tc is an F-stable submodule of Hd
m(R). Moreover cTc = 0, therefore

Tc 6= Hd
m(R). Since Hd

m(R) has no proper nonzero F-stable submodules by assumption, this
forces Tc = 0. This implies that for any η ∈ Hd

m(R), there exists e > 0 such that cF e(η) 6= 0.
We de�ne the following family of R-submodules of Hd

m(R):

Ne = {η ∈ Hd
m(R) | cF e(η) = 0} for e > 0

By the previous observation, we have
⋂
eNe = Tc = 0. Moreover, by injectivity of Frobenius

on Hd
m(R) we obtain the chain of inclusions N1 ⊇ N2 ⊇ N3 ⊇ · · · . Since Hd

m(R) is Artinian,
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these facts imply that there exists an e0 > 0 such that Ne0 = 0, which is equivalent to say
that cF e0 is injective on Hd

m(R), i.e., R is F-rational. �

Theorem 6.19 (Deformation property). Let (R,m) be a local ring and x a regular element
on R. Then

(1) If R/xR is Cohen-Macaulay and F-injective, then R is Cohen-Macaulay and F-
injective.

(2) If R/xR is F-rational, then R is F-rational.

Proof. (1) It is well-known that R/xR implies R Cohen-Macaulay, so it remains to show
that the action of Frobenius on Hd

m(R) is injective, where d = dimR as usual. Consider the
following commutative diagram

0 // R
·x
//

xp
e−1F e

��

R //

F e

��

R/xR //

F e

��

0

0 // R
·x
// R // R/xR // 0.

Since R/xR is Cohen-Macaulay of dimension d−1, its only non zero local cohomology module
is Hd−1

m (R/xR). So, the previous diagram induces the following commutative diagram

0 // Hd−1
m (R/xR) //

F e

��

Hd
m(R)

·x
//

xp
e−1F e

��

Hd
m(R) //

F e

��

0

0 // Hd−1
m (R/xR) // Hd

m(R)
·x
// Hd

m(R) // 0.

Assume by contradiction that the middle map xp
e−1F e is not injective on Hd

m(R). Then
ker(xp

e−1F e) is a nonzero submodule of Hd
m(R) which is Artinian. Therefore ker(xp

e−1F e)
has nonzero intersection with the socle of Hd

m(R) which is an essential submodule. Thus,
there exists 0 6= η ∈ Hd

m(R) such that xp
e−1F e(η) = 0 and x · η = 0, thus by exactness of

the rows of the diagram η is coming from Hd−1
m (R/xR). By diagram chasing, this yields

F e(η) = 0 in Hd−1
m (R/xR) contradicting the F-injectivity of R/xR. Therefore, the map

xp
e−1F e : Hd

m(R) → Hd
m(R) is injective. This forces the injectivity of F e on Hd

m(R), that is
R is F-injective.
(2) We take c ∈ R◦ and consider the F-stable submodule Tc = {η ∈ Hd

m(R) | cF e(η) =
0 ∀e > 0}. Reasoning as in the proof of Theorem 6.18, it is enough to show that Tc = 0.
Assume by contradiction that Tc 6= 0, then also Soc(Hd

m(R))∩Tc 6= 0 since Hd
m(R) is Artinian

so its socle is an essential submodule. This implies the existence of a nonzero η ∈ Hd
m(R)

such that cF e(η) = 0 for all e > 0 and xη = 0. We write c = xnc′, where c′ /∈ (x) and
n ∈ N. Choose e0 > 0 such that pe0 − 1 > n. We consider the commutative diagram of local
cohomology modules as in (1). Since cF e(η) = 0 for any e > 0, by our choice of e0 we have
also c′xp

e0−1F e0(η) = 0. Moreover, since xη = 0 we know that η comes from Hd−1
m (R/xR).

Therefore the commutativity of the diagram yields c′F e0(η) = c′xp
e0−1F e0(η) = 0, and so

c′F e(η) = 0 for all e � 0. On the other hand, R/xR is a normal domain, since it is F-
rational, so c′ 6= 0 in R/xR, that is c′ ∈ R◦. Thus, the condition c′F e(η) = 0 contradicts the
injectivity of the map c′F e : Hd−1

m (R/xR)→ Hd−1
m (R/xR) for e� 0, hence the F-rationality

of R/xR. Hence, Tc = 0 and we are done. �
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6.3.4. Rational singularities. We conclude this section with a brief informal discussion about
the connection of F-rationality with an important geometric de�nition in singularity theory:
the notion of rational singularity. Let X be a normal variety over an algebraically closed �eld
k. A resolution of singularities for X is a proper1 birational map f : W → X such that W is
non-singular. A point x ∈ X is said to be a rational singularity if there exists a resolution of
singularities f : W → X such that (Rif∗OW )x = 0 for all i > 1, where Rif∗(−) denotes the
i-th right derived functor of the direct image functor f∗(−) (cf. [Har77, �III.8]). Since this is
a local condition, in practice it su�ces to compute the higher direct images sheaves when X
is a�ne, and in this case Rif∗OW is the sheaf associated to the module H i(W,OW ). In the
case that X = Spec(R) is a surface, with (R,m) local normal domain, this condition can be
further rephrased in a number of ways. For example, there exists among all resolutions of
X a minimal resolution π : X̃ → X such that any other resolution factors through (X̃, π).
Then, the origin x = {m} ∈ X is a rational singularity if and only if H1(X̃,OX̃) = 0, that
is the geometric genus of X is 0, or, equivalently, the arithmetic genus of X̃ and X is the
same.
Resolution of singularities are known to exists over �elds of characteristic 0 by the work

of Hironaka or if the dimension of X is at most 2, but the problem of their existence is still
open for higher dimension in positive characteristic. For this reason, Lipman and Teissier
introduced the notion of pseudo-rationality, which coincides with rationality for rings that
are localization of a�ne domains over �elds of characteristic 0. The de�nition of pseudo-
rationality is quite technical and we do not present it here. We limit ourselves to mention
that using the characterization of F-rationality of Theorem 6.18, Karen Smith proved that
F-�nite (and more generally, excellent) rings which are F-rational are pseudo-rational. We
refer to [Smi97] for the de�nition of pseudo-rationality and the proof of this result.
Finally, we consider the following situation. Let R = k[x1, . . . , xn]/(f1, . . . , fm) be an

a�ne algebra over a �eld k of characteristic 0 such that the polynomials f1, . . . , fm have
coe�cients in Z. Then Z[x1, . . . , xn]/(f1, . . . , fm) is a free Z-module and we can consider its
reduction modulo p for any p prime: Rp = Z/pZ[x1, . . . , xn]/(f1, . . . , fm). We say that the
ring R has F-rational type if Rp is F-rational for all but �nitely many prime numbers p. If
X is a scheme of �nite type over k, and x ∈ X is a closed point, we say that x has F-rational
type if x has an open a�ne neighbourhood de�ned by a ring of F-rational type. The scheme
X has F-rational type if every point x of X has F-rational type.

Theorem 6.20 (Smith and Hara). Let X be a scheme of �nite type over an algebraically
closed �eld of characteristic 0. Then X has F-rational type if and only if X has rational
singularities.

1A morphism of varieties φ :W → X is proper if for every valuation ring V with morphism α : Spec(V )→
X, there is a unique morphism β : Spec(V )→W such that φ ◦ β = α.
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7. Further relations between F-singularities

So far, given an F-�nite ring we have proved the following implications:

regular +3 strongly F-regular

$,

+3 F-regular +3 weakly F-regular +3 F-rational

��
F-split ks +3 F-pure +3 F-injective

To complete the picture of the known implications which always hold between F-singularities
we need to prove that weakly F-regular rings are F-split. In order to do so, we need some
preliminary results.
When (R,m, k) is local, there is a useful criterion to verify whether a map is pure. Recall

that the injective hull E := ER(k) of the residue �eld k is an injective R-module such that
k ⊆ E is an essential extension. The latter means that for every non-zero submodule N ⊆ E
one has N ∩ k 6= 0. The injective hull E exists, and it is unique up to isomorphism.

Remark 7.1. For convenience of the reader, we recall some of the equivalent de�nitions of
a Gorenstein ring. For a proof, see the standard references of this course (e.g., [BH93] or
[BS13]). A local ring (R,m, k) of dimension d is Gorenstein if R is Cohen-Macaulay and one
of the equivalent conditions holds:

(1) E ∼= Hd
m(R);

(2) For some (equivalently, all) system of parameters (x1, . . . , xd), the Artinian ring R =
R/(x1, . . . , xd) is such that soc(R) = 0 :R m is a 1-dimensional k-vector space;

(3) For some (equivalently, all) system of parameters (x1, . . . , xd), the Artinian ring R =
R/(x1, . . . , xd) is injective as a module over itself.

Remark 7.2. If R is an Artinian Gorenstein ring and M is any R-module, then any injective
map R → M splits. This can be seen for instance recalling that R is injective as a module
over itself, and therefore one obtains a splitting of the inclusion as follows:

R

0 // R

idR

OO

// M

``

Moreover, since when (R,m) is Artinian the extension soc(R) ⊆ R is always essential, when
R is Gorenstein the map f : R → M is injective (hence split) if and only if f(δ) 6= 0 for
any generator δ of soc(R). Note that, in these assumptions, R ∼= E. More generally, if
f : E → M is a map of R-modules, and soc(E) = 〈u〉, then f is split if and only if it is
injective, if and only if f(u) 6= 0.

We now recall some facts that will be very useful in the rest of this section.

Proposition 7.3. Let (R,m, k) be a local ring, with injective hull of the residue �eld k ⊆ E.

(1) The R-module E is Artinian (not Noetherian, unless dim(R) = 0).
(2) IfM is an Artinian R-module, there is an injectionM ↪→ E⊕t for some integer t > 0,

called the type of M .
(3) For any α ∈ E there exists a positive integer n = n(α) such that mnα = 0. Equiva-

lently, H0
m(E) = E.
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(4) If R is an excellent reduced ring (e.g. complete or F-�nite and reduced), or has depth
at least two, then R is approximately Gorenstein, that is, there exists a sequence of
nested ideals {It}t>1, co�nal withe the powers of the maximal ideal, such that R/It is
Artinian Gorenstein for all t > 1. Moreover, E = limt→∞R/It.

The �rst three claims are standard facts about the injective hull of the residue �eld; for
instance, see [BH93]. The �rst claim of (4) can be found in Hochster's work on purity VS
cyclic purity [Hoc77]. For the last claim, observe that if R is approximately Gorenstein
with respect to a sequence {It}, then we may assume without loss of generality that It+1 ⊆
It for every t. Observe that, since It de�nes a Gorenstein Artinian ring, one has that
HomR(R/It, ER(k)) ∼= ER/It(k) ∼= R/It. In particular, since the powers {It} are co�nal with
the maximal ideal, the inclusions It+1 ⊆ It and the Ext-de�nition of local cohomology yield

E = H0
m(E) ∼= lim

t→∞
HomR(R/It, E) ∼= lim

t→∞
R/It.

The following result will be crucial in the rest of the section.

Proposition 7.4. Let f : (R,m) → S be a ring map, and assume that R is approximately
Gorenstein with respect to a family of ideals {It}. The following are equivalent:

(1) f is pure.
(2) fR/I : R/I → S/IS is injective for all ideals I ⊆ R.
(3) ft : R/It → S/ItS is injective for all t� 0.
(4) fE : E → S ⊗R E is injective.
(5) If u denotes the image of 1 ∈ k inside E, then fE(u) 6= 0.

Proof. (1) ⇒ (2) ⇒ (3) are clear. The fact that (3) implies (4) follows from the afore-
mentioned fact that E ∼= lim

t→∞
R/It. Clearly (4) implies (5). Assume (5), and assume by

contradiction that f is not pure. Since tensor products commute with direct limits, and
every R-module is a direct limit of �nitely generated R-modules, f is pure if and only if
fM : M → S⊗RM is injective for every �nitely generated R-module M . Let M be a �nitely
generated R-module, and assume that fM(α) = 0 for some α ∈ M . Because M is �nitely
generated, there exists n ∈ N such that α /∈ mnM , since

⋂
n>1 m

nM = (0). Then α 6= 0 in
M/mnM , and there is an induced map fM/mnM : M/mnM → S ⊗R M/mnM . Observe that
fM/mnM(α) is still zero. Summing up, if f is not pure, we can �nd an Artinian module M
such that fM is not injective. Since M is Artinian, there is an injection ι : M ↪→ E⊕t, which
induces a commutative square

E⊕t
fE⊕t

// S ⊗R E⊕t

M

ι

OO

fM
// S ⊗RM

idS⊗ι

OO

By assumption, fE(u) 6= 0, and since u generates soc(E) by previous considerations we have
that fE is injective. Thus, (fE)⊕t = fE⊕t is injective. Chasing the diagram, this gives that
fM is injective, a contradiction. �
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Condition (2) of Proposition 7.4 is sometimes referred to as cyclic purity, since purity is
tested only for cyclic modules.

Theorem 7.5. Let R be a weakly F-regular ring. Then R is F-pure.

Proof. Since both weak F-regularity and F-purity are local issues at maximal ideals, we may
assume that (R,m) is local and weakly F-regular. Then R is normal by Proposition 3.5. If
dim(R) 6 1 then R is regular, and we are done. If dim(R) > 2, then R satis�es Serre's
condition (S2), and in particular depth(R) > 2. Therefore R is approximately Gorenstein
with respect to some family {It}. Suppose that R → F∗(R) is not pure. Then there exists
t� 0 such that R/It → F∗(R)/ItF∗(R) is not injective, that is, there exists r ∈ Rr It such
that r ∈ ItF∗(R). As the latter is equivalent to rp ∈ I [p]

t , this implies that r ∈ I∗t choosing
c = 1, and thus r ∈ It because R is weakly F-regular; a contradiction. �

Remark 7.6. Given an ideal I ⊆ R, the Frobenius closure of I is de�ned as IF = {x ∈ R |
xq ∈ I [q] for all q = pe � 0}. Note that I ⊆ IF ⊆ I∗. Proposition 7.4 shows that if R is
excellent, then R is F-pure if and only if I = IF for all ideals I ⊆ R. The forward direction
is clear, since the map ϕR/I : R/I → F e

∗ (R)/IF e
∗ (R) is injective for all ideals I and all e > 1

if R is F-pure. Conversely, the fact that (0) = (0)F implies that R is reduced, and thus
approximately Gorenstein. Our assumption guarantees that ϕR/I : R/I → F e

∗ (R)/IF e
∗ (R) is

injective for all ideals I and all e > 1, and by Proposition 7.4 we conclude that R is F-pure.

Theorem 7.7. Let R be a Gorenstein ring. If R is F-injective, then R is F-pure. If R is
F-rational and F-�nite, then R is strongly F-regular.

Proof. All issues are local at maximal ideals, therefore we may assume that (R,m) is a d-
dimensional Gorenstein local ring. Let x1, . . . , xd be a full system of parameters, and let
It = (xt1, . . . , x

t
d). Observe that R is approximately Gorenstein with respect to the family of

ideals {It}.
First assume that R is F-injective. Consider the map ϕ : R → F∗(R) sending 1 7→ F∗(1).

By Proposition 7.4 it su�ces to show that ϕ⊗R/It is injective for all t� 0. Assume by way
of contradiction that ϕ⊗ R/It is not injective for some t > 0. This means that there exists
r ∈ Rr It, and such that rp ∈ I [p]

t . If we consider the element η =
[
r
xt

]
, where x = x1 · · · xd,

then η 6= 0 but F (η) = 0, contradicting our assumption. This shows that R is F-pure.
Now assume that R is F-rational and F-�nite. Let c ∈ R◦, and let e > 0 be such that

cF e : Hd
m(R) → Hd

m(R) is injective, which exists by assumption. We claim that the map
ϕe : R → F e

∗ (R) de�ned as 1 7→ F e
∗ (c) splits. Note that, since R is F-�nite, ϕe splits if and

only if it is pure. By way of contradiction, assume that ϕe is not pure, so that ϕe ⊗ R/It is
not injective for some t > 0. This means that there exists r ∈ R r It such that crq = I

[q]
t

for q = pe. If we let η =
[
r
xt

]
∈ Hd

m(R), then η is a non-zero element in the kernel of cF e,
which contradicts our assumptions. Therefore ϕe is pure, hence split, and R is strongly
F-regular. �

We update the diagram of implications:
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regular +3 strongly F-regular

$,

+3 F-regular +3 weakly F-regular

��

+3 F-rational

��

+Gorenstein

ow

F-split ks +3 F-pure +3 F-injective

+Gorenstein

go

We end the section by discussing why certain arrows in the above diagram are not re-
versible, in general.
We start with the two most challenging ones, which still constitute one of the biggest open

problem in the theory of F-singularities.

Conjecture 7.8. Weak and strong F-regularity are equivalent.

Not much is known about this conjecture (or even about the intermediate converse impli-
cations) outside the Gorenstein case. M.P. Murthy showed that weakly F-regular rings of
�nite type over an uncountable �eld are F-regular, that F-regular rings essentially of �nite
type over a �eld of characteristic p > 5 are strongly F-regular up to dimension four [AP19].
Moreover, it is known that weak and strong F-regularity are equivalent if R is N-graded over
a �eld [LS99], or if R is Q-Gorenstein on the punctured spectrum (a �niteness condition
on the canonical module as an element of the class group). The full conjecture is known in
dimension up to three as a consequence of the previous claim, since 2-dimensional local rings
with at worst rational singularities have �nite class groups thanks to a result of Lipman.
It is very easy to �nd an example of an F-pure ring that is not weakly F-regular (or

F-rational). In fact, since weakly F-regular and F-rational local rings are normal do-
mains, it su�ces to take any Stanley Reisner ring which is not regular. For instance,
R = FpJx, yK/(xy).
Continuing with other F-singularities, there are several examples of strongly F-regular

rings which are not regular. For instance, any Veronese subring of a regular local ring is
strongly F-regular, since it is a direct summand. However, such rings are typically singular;
for an explicit example, take R = Fp[s2, st, t2] ∼= Fp[x, y, z]/(xz − y2).
The arrows �pointing to F-injectivity� are also not reversible, in general.

Example 7.9 (Fedder, Singh). Let R = FpJx, y, z, wK/(xy, xz, y(z − w2)). If we let I =
(w2(x2 − y4)) and α = y4w3, then we claim that α /∈ I, but αp ∈ I [p]. In fact, modulo I [p]

one has:
αp = y4pw3p = y4pw3p−2z = w3p−2x2pz = 0,

where we used that y2w = yz in R, 3p − 2 > 2p and y4pw3p−2 = x2pw3p−2 modulo I [p].
Now let us give degrees deg(x) = deg(z) = 2 and deg(y) = deg(w) = 1. Then R is graded,
and both α and I are homogeneous. If α ∈ I, then there exist homogeneous elements
A,B,C,D ∈ S = Fp[x, y, z, w] such that in S one has:

y4w3 = A(w2(x2 − y4)) +B(xy) + C(xz) +D(y(z − w2)).

By looking at degrees, we see that A has to have degree one, and thus A = A(y, w). For
this reason, it is easy to see that A must be zero modulo (y), and therefore A = λy for some
λ ∈ Fp.
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Going modulo (x, z), we get the equality y4w3 = −λy5w2 −Dyw2, where D is the image
of D in S/(x, z). We get that D = y3w + λy4, and therefore D = y3w + λy4 + D′, where
D′ ∈ (x, z)S. Substituting, we get a new equality 0 = λx2yw2 + B(xy) + C(xz) +D′(y(z −
w2)) + y4zw + λy5z. Dividing by y and regrouping, we can �nd homogeneous polynomials
F,G such that 0 = Fx+G(z−w2) + y3zw+λy4z. Going modulo (x), in S/(x) ∼= Fp[y, z, w]
we get an equality y3zw+λy4z = −G(z−w2). Dividing by y3z we get w+λy = −G(z−w2),
which is a contradiction, since the left-hand side has degree one, while z − w2 has degree
two. Therefore α /∈ I.
The above claims show that the map R/I → F∗(R)/IF∗(R) is not injective, and therefore

R is not F-pure. Since R is not a domain, it cannot be F-rational. Finally, note that
w is a regular element for R, and R/(w) ∼= FpJx, y, zK/(xy, xz, yz) is F-split. Since R is
Cohen-Macaulay, it follows from Theorem 6.19 (1) that R is F-injective.

Finally, it is harder to �nd an example of an F-rational ring which is not weakly F-
regular. Again, such an example cannot be Gorenstein, by what we have shown above. The
best known way to obtain such examples come from a geometric construction, masterfully
used by K.I. Watanabe to construct the following example.

Example 7.10 (Watanabe). Let R be the localization of Fp[t, xt4, x−1t4, (x− 1)−1t4] at the
obvious maximal ideal. Then R is F-rational, but is not even F-pure (hence not weakly F-
regular). We do not show here the details, and we refer to [MP21, Example 9.1 and Remark
9.2] for a proof of these facts.

8. Hilbert-Kunz Multiplicity

Let (R,m, k) be a Noetherian local ring of Krull dimension d, let I be an m-primary ideal,
and let M be a �nitely generated R-module. The Hilbert-Samuel function of I and M is the
numerical function HSR(I,M,−) : N→ N de�ned as

HSR(I,M, n) = `R
(
M/In+1M

)
,

where `R(−) denotes the R-module length. For n � 0, this function takes the shape of
a polynomial of degree d in n called Hilbert-Samuel polynomial. The leading coe�cient of
this polynomial is e(I,M)

d!
, where e(I,M) is an integer called Hilbert-Samuel multiplicity (or

simply multiplicity) of I and M . For I = m, M = R, we usually write e(R) = e(m, R) and
call it multiplicity of the ring R. The Hilbert-Samuel function and multiplicity capture many
important information about the ring.
If we assume further that R has positive characteristic p, then we can replace ordi-

nary powers of the ideal I by Frobenius powers I [pe] and study the corresponding lengths
`R
(
M/I [pe]M

)
for increasing values of e. This is the approach developed by Kunz in the '60.

He was the �rst to show that the lengths `R(R/m[pe]) encode information about the singu-
larities of the ring. Years later, Monsky resumed Kunz's idea and de�ned the Hilbert-Kunz
function and multiplicity which are the main object of investigation of this chapter.

8.1. Rank of F e
∗ (R) and Kunz's Theorem revised. Let R be a Noetherian ring. We

recall that an R-module M is said to have rank r if M ⊗ Q is a free Q-module of rank
r, where Q is the total ring of fractions of R. If M is �nitely presented module, then the
following facts are equivalent (see e.g. [BH93, Proposition 1.4.3]):

(1) M has rank r;
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(2) M has a free submodule F of rank r such that M/F is a torsion module.
Now, assume that (R,m, k) is local of positive characteristic p and Krull dimension d. During
the proof of Kunz's Theorem 2.7, we saw that if R is regular, then the R-module F∗(R) is
free of rank [F∗k : k]pd. Using a similar argument, we can compute the rank of F e

∗ (R) also
when R is not regular.

Theorem 8.1. Let (R,m, k) be an F-�nite local domain of dimension d. Then for each
e ∈ N we have that rankR(F e

∗ (R)) = [F e
∗k : k]pde.

Proof. Assume �rst that R is complete. By Cohen's Structure Theorem there exists a power
series subring A = kJx1, . . . , xdK ⊆ R such that R is a �nitely generated A-module. Then we
have a commutative diagram of local domains:

A

��

// R

��

F e
∗ (A) // F e

∗ (R)

which implies

rankA(F e
∗ (R)) = rankR(F e

∗ (R)) · rankA(R) = rankF e∗ (A)(F
e
∗ (R)) · rankA(F e

∗ (A)).

Now, the local extension A → R is isomorphic to F e
∗ (A) → F e

∗ (R), therefore rankA(R) =
rankF e∗ (A)(F

e
∗ (R)). Thus, we obtain rankR(F e

∗ (R)) = rankA(F e
∗ (A)). As we saw in the proof

of Theorem 2.7, F e
∗ (A) is a free A-module of rank rankA(F e

∗ (A)) = [F e
∗k : k]pde. A basis as

A-module is given by{
F e
∗ (λx

i1
1 · · ·x

id
d ) | 0 6 ij < pe and {F e

∗λ} is a free basis of F e
∗k over k

}
.

Finally, suppose that R is not necessarily complete. Let P be a minimal prime of the
completion R̂ such that d = dim(R) = dim(R̂/P ). Let K be the fraction �eld of R and L
the fraction �eld of R̂/P . Since P is a minimal prime of R̂ and R̂ is reduced by Lemma 4.7,
we have in fact that L = R̂P . Then, we have the following chain of isomorphisms

F e
∗ (L) ∼= (F e

∗ (R̂))P ∼= F e
∗ (R̂)⊗R̂ R̂P

∼= F e
∗ (R)⊗R R̂⊗R̂ R̂P

∼= F e
∗ (R)⊗R R̂P

∼= F e
∗ (K)⊗K L.

Therefore, we have F e
∗ (L) ∼= F e

∗ (K) ⊗K L, and in particular, [F e
∗ (L) : L] = [F e

∗ (K) : K].
Thus we obtain

rankR(F e
∗ (R)) = [F e

∗ (K) : K] = [F e
∗ (L) : L] = rankR̂/P (F e

∗ (R̂/P )) = [F e
∗k : k]pde,

where the last equality follows from the �rst part of the proof since R̂/P is complete. �

Remark 8.2. Let K be an F-�nite �eld. Every element F∗(r) of the Frobenius push forward
F∗(K) satis�es the monic polynomial equation xp − r = 0. Therefore the degree of the
minimal polynomial of every element of F∗(K) divides p. It follows that [F∗K : K] = pα

for some α ∈ N and by iterating the Frobenius map we obtain also [F e
∗K : K] = peα for

every e ∈ Z+. Therefore, for an F-�nite local domain (R,m, k) of dimension d, we have
[F∗k : k] = pα, where α = logp([F∗k : k]) is an integer. Thus, we can write the rank of F e

∗ (R)

in Theorem 8.1 also as rankR(F e
∗ (R)) = pe(d+α).

We collect in the following lemma some useful properties of the length function under local
ring extension.
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Lemma 8.3. Let ϕ : (R,m)→ (S, n) be a local homomorphism.

(1) If M is an R-module of �nite length and ϕ is �at then

`S(S ⊗RM) = `R(M) · `S (S/mS) .

(2) If N is an S-module of �nite length and [S/n : R/m] <∞ then

`R(N) = [S/n : R/m] · `S(N).

Remark 8.4. Let R be F-�nite and M a �nitely generated R-module of �nite length, then
also F e

∗ (M) has �nite length. So Lemma 8.3 (2) applied to the Frobenius R→ F e
∗ (R) yields

`R (F e
∗ (M)) = [F e

∗k : k] · `F e∗ (R) (F e
∗ (M)) = [F e

∗k : k] · `R(M).

Moreover, for any m-primary ideal I we have
`R (F e

∗ (M)⊗R R/I) = `R (F e
∗ (M)/IF e

∗ (M))

= `R
(
F e
∗ (M/I [pe]M)

)
= [F e

∗k : k] · `R
(
M/I [pe]M

)
In particular, when I = m by Nakayama's Lemma the left hand side of the previous chain of
equalities is precisely µR (F e

∗ (M)), the minimal number of generators of F e
∗ (M) as R-module,

thus
µR (F e

∗ (M)) = [F e
∗k : k] · `R

(
M/m[pe]M

)
.

Remark 8.5. For a local ring (R,m, k) the m-adic completion R → R̂ is a �at map, so by
Lemma 8.3 (1), when we compute the length of an R-module M we can assume without loss
of generality that R is complete. Similarly, taking the algebraic closure of the residue �eld
is also a �at map, so we can also assume that k is algebraically closed.

Theorem 8.6 (Kunz). Let (R,m, k) be a local F-�nite ring of dimension d. Then

`R
(
R/m[pe]

)
> pde ∀e > 0.

Moreover, the following facts are equivalent:

(1) R is regular;
(2) `R

(
R/m[pe]

)
= pde for some e > 0;

(3) `R
(
R/m[pe]

)
= pde for all e > 0;

(4) F e
∗ (R) is R-free for some e > 0;

(5) F e
∗ (R) is R-free for all e > 0.

Proof. To prove the �rst statement, observe that going modulo a minimal prime will only
potentially decrease `R

(
R/m[pe]

)
. Therefore we can assume that R is a domain. Moreover,

we may also assume that R is complete and k is algebraically closed thanks to the previous
observation. By Theorem 8.1, F e

∗ (R) is a �nitely generated R-module of rank pde, therefore
we have µR(F e

∗ (R)) > pde with equality if and only if F e
∗ (R) is free. By Nakayama's Lemma

(see Remark 8.4) we obtain

`R
(
R/m[pe]

)
= `R (F e

∗ (R)/mF e
∗ (R)) = µR(F e

∗ (R)) > pde

with equality if and only if F e
∗ (R) is free. This shows the �rst claim and the equivalences

(2) ⇔ (4) and (3) ⇔ (5). By Kunz's Theorem 2.7 we have that R is regular if and only if
F e
∗ (R) is �at for some (equivalently for all) e > 0, but for a �nitely generated module over
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a local ring being �at and free are equivalent. This shows the remaining equivalences and
completes the proof. �

8.2. Existence of the HK multiplicity. From now on, let (R,m, k) be a Noetherian local
ring of prime characteristic p > 0, and Krull dimension d.

De�nition 8.7. Let I be an m-primary ideal of R, and let M be a �nitely generated R-
module. The function

HKR(I,M, e) = `R
(
M/I [pe]M

)
is called Hilbert-Kunz function of I and M . When M = R we will denote the function also
by HKR(I, e), and if further I = m we denote the Hilbert-Kunz function simply by HKR(e).
The limit

lim
e→∞

HKR(I,M, e)

pde

is called Hilbert-Kunz multiplity of I andM and denoted by eHK(I,M). We set also eHK(I) =
eHK(I, R) and eHK(R) = eHK(m), the latter is also called Hilbert-Kunz multiplicity of R.

It is not clear from the de�nition that the limit de�ning the Hilbert-Kunz multiplicity
always exists. In fact, although this function was �rst studied by Kunz at the end of the
60's, the existence of the limit was proved only later by Monsky in 1983. The rest of this
section is devoted to the proof of the the existence of the Hilbert-Kunz multiplicity. We will
follow Monksy's original path with few adaptations.

Lemma 8.8 (Lech's Formula). Let (R,m) be a Noetherian local ring of Krull dimension
d, let x1, . . . , xd be a system of parameters generating an ideal J , and let M be a �nitely
generated R-module. Then

lim
min{aj}→∞

`R (M/(xa11 , · · · , x
ad
d )M)

a1 · · · ad
= e(J,M),

where e(J,M) denotes the Hilbert-Samuel multiplicity of J over M .

Proof. If M is maximal Cohen-Macaulay the formula follows easily from the fact that
e(I,M) = `R(M/IM) for any m-primary ideal I. A proof of the general case can be done by
induction on d. We refer the interested reader to [HS06, Theorem 11.2.10] for details. �

We will often use the following standard notation.

Notation 8.9. For two functions f, g : N → R we write f(n) = O(g(n)) if there exists a
constant C > 0 such that |f(n)| 6 C · g(n) for all n� 0.

Lemma 8.10. Let I be an m-primary ideal of R, and letM be a �nitely generated R-module,
then

e(I,M)

d!
6 lim inf

e→∞

HKR(I,M, e)

pde
6 lim sup

e→∞

HKR(I,M, e)

pde
6 e(I,M).

Proof. Since we are considering lengths we can assume without loss of generality that the
ring R is complete and the residue �eld k is algebraically closed. Let J ⊆ I be a minimal
reduction. Since I is m-primary, J is generated by a system of parameters x1, . . . , xd. We
have inclusions J [pe] ⊆ I [pe] ⊆ Ip

e
, which imply inequalities

`R
(
M/J [pe]M

)
> `R

(
M/I [pe]M

)
> `R

(
M/Ip

e

M
)
,
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where `R
(
M/I [pe]M

)
= HKR(I,M, e) and `R

(
M/Ip

e
M
)
is the Hilbert-Samuel function of

I and M . We recall that `R
(
M/Ip

e
M
)
→ e(I,M)

d!
pde + O(p(d−1)e). So dividing the previous

inequalities by pde and letting e→∞ we obtain immediately e(I,M)
d!
6 lim inf

e→∞

HKR(I,M, e)

pde
.

Moreover, by Lech's Formula (Lemma 8.8) we have
`R(M/J [pe]M)

pde
→ e(J,M) = e(I,M) since

J is a minimal reduction of I. This gives the other inequality and completes the proof. �

The previous lemma has some immediate consequences. First, it gives an upper bound for
the Hilbert-Kunz function, and then it gives the existence of the Hilbert-Kunz multiplicity in
dimension one. Also, observe that as consequence of Lech's Formula, for ideals generated by
a full system of parameters, the Hilbert-Kunz multiplicity coincides with the Hilbert-Samuel
multiplicity. We state these facts as separate corollaries.

Corollary 8.11. Let I be an m-primary ideal of R, and let M be a �nitely generated R-
module, then there exists a positive constant C = C(I,M) ∈ R+ such that

HKR(I,M, e) 6 C · pe dimM

for each e ∈ N. In particular, if dimM < dimR then eHK(I,M) = 0.

Proof. If dimM = dimR = d, the conclusion follows directly from the statement of Lemma 8.10.
For the case dimM < d, we can reason as follows. Take an element f ∈ AnnR(M) such that
dimR/f < d and let A = R/f . Since M is �nitely generated as R-module it is also �nitely
generated as A-module. In particular, there exists a surjective map ψ : An →M . Tensoring
with R/I [pe] preserve surjection, so we get

HKR(I,M, e) = `R
(
M/I [pe]M

)
= `A

(
M/I [pe]M

)
6 n · `A

(
A/I [pe]A

)
6 C · pe dimA

where the second equality holds since A and R have the same residue �eld and the last
inequality holds by Lemma 8.10. An induction argument on dimM concludes the proof. �

Corollary 8.12. Let x1, . . . , xd be a full system of parameters generating an ideal J , and let
M be a �nitely generated R-module. Then eHK(J,M) = e(J,M).

Corollary 8.13. Let dimR = 1 and let I be an m-primary ideal, then the Hilbert-Kunz
multiplicity of I exists and eHK(I) = e(I).

Proof. Simply set d = 1 in the statement of Lemma 8.10. �

When R is a one-dimensional local ring, the Hilbert-Kunz function of an m-primary ideal
I takes the shape HKR(I, e) = e(I)pe+ϕ(e), where ϕ is a bounded function. Monsky proved
that ϕ is periodic. However, determining ϕ explicitly is not easy in general.

Example 8.14. Consider the quotient ring R = kJx, yK/(xa − yb), where a > b are positive
integers. Since dimR = 1, by the previous results the Hilbert-Kunz function of R takes the
following form

HKR(e) = eHK(m)pe + ϕa,b(e),

where eHK(m) = e(m) = b is the Hilbert-Samuel multiplicity of R and the function ϕa,b(e) is
periodic. In order to compute ϕa,b(e) more explicitly, recall that

HKR(e) = dimk kJx, yK/(xp
e

, yp
e

, xa − yb).
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So we need to count monomials xiyj with 0 6 i, j < pe paying attention that the relation
xa − yb forces to identify some of them. More precisely, we obtain

ϕa,b(e) = #{(i, j) ∈ N2 : i− r > (α− β)a, 0 6 i < a, 0 6 j < pe},

where j = βb+ s, 0 6 s < b, pe = αa+ r, 0 6 r < a. For example, for a = b = 5 and p = ±2
mod 5, the Hilbert-Kunz function of R = kJx, yK/(x5 − y5) has periodic part equal to

ϕ5,5(e) =

{
−4 for e even
−6 for e odd.

If dimR > 1, then the conclusion of Corollary 8.13 does not hold in general. In fact, the
Hilbert-Kunz multiplicity is not necessarily an integer as the following example shows.

Example 8.15. We consider the A2-singularity R = kJx, y, zK/(y2 − xz), where k is a �eld
of characteristic p > 2. A direct, but tedious, computation shows that

HKR(e) =
3

2
p2e − 1

2
.

Proposition 8.16. Let I be an m-primary ideal and let M,N be �nitely generated R-
modules. We set W = R \

⋃
i Pi, where the union runs over all minimal primes Pi of R

with dimR/Pi = d. If MW
∼= NW then∣∣∣HKR(I,M, e)− HKR(I,N, e)

∣∣∣ = O(p(d−1)e).

In particular, eHK(I,M) = eHK(I,N) and if one exists, also the other exists.

Proof. Since MW
∼= NW then there exists ϕ : M → N whose cokernel C = Cokerϕ is

annihilated by some f ∈ W . Consider the exact sequence M → N → C → 0 and tensor
with R/I [pe]. We obtain

M/I [pe]M → N/I [pe]N → C/I [pe]C → 0.

Taking lengths we obtain HKR(I,N, e) 6 HKR(I,M, e)+HKR(I, C, e). Now, we observe that
dimC < d since fC = 0 for f ∈ W , i.e., AnnR(C) contains a regular element. Therefore,
by Corollary 8.11 HKR(I, C, e) = O(p(d−1)e). Interchanging the role of M and N gives the
desired conclusion. �

Proposition 8.17. Let I be an m-primary ideal, and let 0→ N → M → L→ 0 be a short
exact sequence of �nitely generated R-modules. Then we have

HKR(I,M, e) = HKR(I,N, e) + HKR(I, L, e) +O(p(d−1)e).

In particular, we have

eHK(I,M) = eHK(I,N) + eHK(I, L),

provided the limit de�ning eHK(−) exist.

Proof. 1) Assume �rst that R is reduced. Then if P is a minimal prime of R, RP is a �eld,
thus MP

∼= NP ⊕ LP and the claim follows from Proposition 8.16.

2) If R is not reduced, choose e′ > 0 such that
(√

(0)
)[pe

′
]

= 0 and consider the sequence
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0 → N → M → L → 0 as a sequence of Rpe
′
-modules. We apply 1) to this sequence, the

ideal I [pe
′
] ∩Rpe

′
, and the reduced ring Rpe

′
. This yields

HKR(I,M, e+ e′) = HKR(I,N, e+ e′) + HKR(I, L, e+ e′) +O(p(d−1)e).

On the other hand, O(p(d−1)e) = O(p(d−1)(e+e′)). So the proposition is proved. �

Theorem 8.18 (Monsky). Let I be an m-primary ideal andM a �nitely generated R-module.
Then the Hilbert-Kunz multiplicity eHK(I,M) exists. In particular, we have

HKR(I,M, e) = eHK(I,M)pde +O(p(d−1)e).

Proof. As already observed, we can assume R complete and k algebraically closed without
loss of generality. We take a �ltration 0 ⊆ M0 ⊆ M1 ⊆ · · · ⊆ Mn = M where Mi+1/Mi

∼=
R/Pi with Pi ∈ Spec(R). Therefore, by applying Proposition 8.17 we can reduce to the
case where M = R/P with P ∈ Spec(R). So without loss of generality, we assume that
M = R domain. Moreover, since R is complete with algebraically closed residue �eld it is
F-�nite (see Remark 4.5). So, by Theorem 8.1 the module F∗(R) is �nitely generated and
torsion-free of rank pd. In particular, we have short exact sequences

0→ R⊕p
d → F∗(R)→ C1 → 0

0→ F∗(R)→ R⊕p
d → C2 → 0

with dim(C1), dim(C2) < d. Applying Proposition 8.17 to these sequences yields∣∣∣HKR(I, F∗(R), e)− HKR(I, R⊕p
d

, e)
∣∣∣ < D · p(d−1)e

for some constant D > 0. Now, observe that HKR(I, F∗(R), e) = `R
(
F∗(R)/I [pe]F∗(R)

)
=

`R(R/I [pe+1]) and HKR(I, R⊕p
d
, e) = `R

(
R/I [pe]

)
pd since R⊕p

d
is free of rank pd. We set

ce = `R
(
R/I [pe]

)
p−de. From the previous inequality we get |ce+1 − ce| < D

pe+1 . This shows
that ce is a Cauchy sequence. In fact, for any ε > 0, choose N > 0 such that D

pN+1 < ε. Then
for any e+ e′ > e > N we have

|ce+e′ − ce| = |ce+e′ − ce+e′−1 + ce+e′−1 − · · ·+ ce+1 − ce|

6
D

pe+e′+1
+

D

pe+e′
+ · · ·+ D

pe+1

=
D

pN+1

(
e+e′−N∑
i=e−N

1

pi

)
6

D

pN+1
ε.

Therefore, ce = HKR(I,e)
pde

converges to a real number eHK(I). Observe that for every e, e′ we
have that |ce+e′ − ce| < D

pe
. By multiplying this relation by ped and letting e′ → ∞ we get

that | eHK(I)ped − HKR(I, R, e)| 6 Dp(d−1)e, which also gives the last claim. �

Proposition 8.19. Let I be an m-primary ideal and M a �nitely generated R-module. Then

eHK(I,M) =
∑
P

eHK(I, R/P )`RP (MP ) ,

where the sum runs over all minimal primes P of R with dim(R/P ) = d.
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Proof. By Proposition 8.17 and Theorem 8.18, the Hilbert-Kunz multiplicity is additive on
short exact sequences. We take a �ltration 0 ⊆ M0 ⊆ M1 ⊆ · · · ⊆ Mn = M where
Mi+1/Mi

∼= R/Pi with Pi ∈ Spec(R). If dim(R/Pi) < d then eHK(I, R/Pi) = 0, thus by using
additivity of HK multiplicity, we obtain that eHK(I,M) is the sum of eHK(I, R/P ) for those
primes with dim(R/P ) = d counted as many times as R/P appears as one of the quotients
Mi+1/Mi. We can count this by localizing at P . One sees that the �ltration reduces to a
�ltration of MP , but then all terms collapse except for those with (Mi+1/Mi)P ∼= (R/P )P ,
which are exactly as many as `RP (MP ). �

Corollary 8.20. Let (R,m) be a Noetherian local domain, let I be an m-primary ideal and
M a �nitely generated R-module. Then

eHK(I,M) = eHK(I, R) · rankR(M).

Proof. We set r = rankR(M) and W = R \ {0}. We recall that RW = K is the fraction �eld
of R. Then we have MW

∼= K⊕r ∼= (R⊕r)W . Therefore, Proposition 8.16 yields eHK(I,M) =
eHK(I, R⊕r) = r eHK(I, R), where the last equality follows from Proposition 8.19. �

We conclude this section with two results that allow us to compute some examples of
Hilbert-Kunz multiplicity.

Lemma 8.21. Let (R,m) be a regular local ring, and let I be an m-primary ideal. Then

eHK(I, R) = `R (R/I) .

Proof. Since R is a regular local ring, by Kunz's Theorem 8.6 and Theorem 8.1, F e
∗ (R) is

free of rank [F e
∗k : k]pde. Then, by Remark 8.4 we have

HKR(I, e) = `R
(
R/I [pe]

)
=

1

[F e
∗k : k]

`R (R/I ⊗R F e
∗ (R))

=
1

[F e
∗k : k]

`R (R/I) · [F e
∗k : k]pde = `R (R/I) · pde, .

where the third equality follows from the fact that R/I ⊗R F e
∗ (R) ∼= (R/I)⊕ rankF e∗ (R), since

F e
∗ (R) is free. Thus, dividing the previous chain of equalities py pde and taking the limit for
e→∞ yields the desired claim. �

Lemma 8.22 (Watanabe�Yoshida). Let (R,m) ⊆ (S, n) be a local extension of local domains
such that S is a �nitely generated R-module of rank r and R/m = S/n. Let I ⊆ R be an
m-primary ideal. Then

eHK(I, R) =
1

r
eHK(IS, S).

In particular, if S is regular then eHK(I, R) = 1
r
`S(S/IS).

Proof. Observe that since R/m = S/n, by Lemma 8.3 we have

HKS(IS, S, e) = `S
(
S/(IS)[pe]

)
= `S

(
S/I [pe]S

)
= `R

(
S/I [pe]S

)
= HKR(I, S, e).

In other words, the Hilbert-Kunz function over the ring S of the ideal IS and the S-module S
coincides with the Hilbert-Kunz function over the ring R of the ideal I and the R-module S.
Dividing by pde both sides and taking the limit for e→∞ yields eHK(IS, S) = eHK(I, S) =
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r eHK(I, R), where the last equality follows from Corollary 8.20. Finally, the case when S is
regular follows by combining this with the previous lemma. �

We can use the previous lemmas to compute the Hilbert-Kunz multiplicity of several
classes of rings.

Example 8.23. Let S = kJx1, . . . , xdK, and consider a �nite group G acting linearly on
S such that p - |G|. We denote by R = SG the corresponding invariant ring as in Exam-
ples 3.10 and 5.27. It is well known from Invariant Theory that R is a Cohen-Macaulay nor-
mal local domain and S is a �nitely generated R-module of rank |G|. Thus, by Lemma 8.22
we can compute the Hilbert-Kunz multiplicity of R as eHK(R) = 1

|G| dimk(S/mS), where m is
the maximal ideal of R. Sometimes this latter dimension is easier to compute. For example,
if G is a cyclic group of order n acting linearly on S by xi 7→ ξxi where ξ ∈ k is a primitive
n-th root of unity, then R = SG is the n-th Veronese subring of S. In this case we have

eHK(R) =
1

n

(
d+ n− 1

n− 1

)
.

Another case of interest is when d = 2 and G ⊆ SL(2, k). Then the invariant ring R =
kJx, yKG is an ADE singularity and eHK(R) = 2− 1

|G| .

8.3. HK multiplicity and tight closure. We recall that a local ring R is called formally
equidimensional or (quasi-unmixed) if the dimension of the completion of R modulo any
minimal prime is the same, namely the dimension of R. For formally equidimensional rings,
David Rees related the multiplicity of an ideal with its integral closure. Namely, he proved
that if (R,m) is a formally equidimensional local ring, and I ⊆ J are m-primary ideals, then

e(I) = e(J)⇐⇒ J ⊆ I.

In particular, I is the unique largest ideal containing I having the same multiplicity as I.
Hochster and Huneke proved that a similar relation holds between Hilbert-Kunz multi-

plicity and tight closure. To prove this, we need the following result by Aberbach, which
roughly speaking says that elements not in tight closures are very far from being in Frobenius
powers.

Lemma 8.24 (Aberbach). Let (R,m) be an excellent local domain such that the completion
is also a domain. Let N = lim→t R/Jt be a direct limit system of cyclic modules. Fix u 6∈ 0∗N .
Then there exists e0 > 0 such that⋃

t

(
J

[pe]
t : up

e

t

)
⊆ m[pe−e0 ]

for all e� 0 (where the sequence {ut}t represents u ∈ N).

Theorem 8.25 (Hochster�Huneke). Let (R,m, k) be an excellent local domain such that R̂
is a domain, and let I ⊆ J be m-primary ideals. Then

eHK(I) = eHK(J)⇐⇒ J ⊆ I∗.

In particular, I∗ is the unique largest ideal containing I having the same Hilbert-Kunz mul-
tiplicity as I.
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Proof. "⇐" By assumption there is an element c ∈ R◦ such that cxp
e ∈ I [pe] for all x ∈ J

and e � 0. In other words, c annihilates all modules J [pe]/I [pe] for pe � 0. We observe
that these modules have a bounded number of generators, say t, given by the number of
generators of J . In particular, we have a surjective map (R/(c, I [pe]))⊕t → J [pe]/I [pe], thus
`R
(
J [pe]/I [pe]

)
6 t·`R

(
R/(c, I [pe])

)
. However, `R

(
R/(c, I [pe])

)
= HKR(I, R/c, e) = O(p(d−1)e)

since dimR/c = d − 1. Therefore, from the short exact sequence 0 → I [pe] → J [pe] →
J [pe]/I [pe] → 0 and additivity of `R(−) we obtain |HKR(J, e)− HKR(I, e)| = O(p(d−1)e),
which implies eHK(I) = eHK(J).
"⇒" First, we recall that the Hilbert-Kunz multiplicity does not change by passing to com-
pletion, and similarly for any m-primary ideal L we have (L̂)∗ = L̂∗ since tight closure
commutes with respect to localization at maximal ideals by Lemma 3.3. Hence, we may
assume that R is complete.
Suppose by contradiction that J 6⊂ I∗, then there exists x ∈ J such that x 6∈ I∗. We can

also assume without loss of generality that J = (x, I). Since x 6∈ I∗, by Lemma 8.24 there
exists a �xed integer e0 > 0 such that for e� 0 we have I [pe] : xp

e ⊆ m[pe−e0 ]. Therefore, for
e� 0 we have

HKR(I, e)− HKR(J, e) = `R
(
R/I [pe]

)
− `R

(
R/(I [pe], xp

e

)
)

= `R
(
R/(I [pe] : xp

e

)
)

> `R

(
R/m[pe−e0 ]

)
> δpde

with δ > 0, since `R
(
R/m[pe−e0 ]

)
= HKR(m, e−e0) is the Hilbert-Kunz function of m rescaled

by a factor of e0. In particular, this shows that eHK(I) 6= eHK(J) giving a contradiction. �

There is another important and well-known similarity between Hilbert-Samuel and Hilbert-
Kunz multiplicity. Nagata proved that under mild hypothesis the value 1 of the multiplicity
characterizes when the ring is regular. More precisely, if (R,m) is an unmixed local ring, then
e(R) = 1 if and only if R is regular. Watanabe and Yoshida [WY00] provided the following
Hilbert-Kunz analogue of Nagata's Theorem that we quote here without proof. We recall
that a local ring R is said to be formally unmixed if its completion R̂ is unmixed.

Theorem 8.26 (Watanabe�Yoshida). Let (R,m) be a formally unmixed local ring. Then
eHK(R) = 1 if and only if R is regular.

Example 8.27. The condition formally unmixed is necessary. In fact, the ring R =
kJx, y, zK/(xz, xy) is not regular, but eHK(R) = 1.

We close this chapter with two remarks concerning the comparison between Hilbert-Kunz
and Hilbert-Samuel function/multiplicity.

Remark 8.28. The Hilbert-Samuel multiplicity e(R) of a local ring (R,m) is always a positive
integer. This is not true for the Hilbert-Kunz multiplicity already in simple cases (see e.g.
Example 8.23). However, for a long time all known examples were rational, so it was thought
that eHK(R) would always be a rational number. While this is true for some classes of rings,
such as two-dimensional graded normal rings or binomial hypersurfaces, in 2013 Brenner
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[Bre13] gave an example of a local ring of dimension > 3 with irrational Hilbert-Kunz
multiplicity.

Remark 8.29. The Hilbert-Samuel function HSR(n) takes the shape of a polynomial in n of
degree d = dimR for n� 0. Despite having a polynomial leading term of degree d in pe, in
general the Hilbert-Kunz function HKR(e) is not polynomial in pe. This is true only in very
special cases. However, one may ask whether there exists at least a "second coe�cient" for
HKR(e), that is if there exists β ∈ R such that

HKR(e) = eHK(R)pde + βp(d−1)e +O(p(d−2)e).

This is known to be true for some large classes of rings. Huneke, McDermott, and Monsky
[HMM04] proved that, if R is normal, excellent and with perfect residue �eld, then this is the
case. Chan and Kurano [CK16] proved that the same result holds if one replaces normal with
regular in codimension one. Additionally, Brenner [Bre07] showed that, for standard graded
normal domains of dimension two over an algebraically closed �eld, the second coe�cient β
equals zero.

9. F-signature

In this section we closely follow the approach given in [MP21].

9.1. F-signature exists. Let (R,m) be an F-�nite local ring. By Kunz's Theorem R is
regular if and only if the R-module F e

∗ (R) is free for all/some e > 0. When R is not regular,
in order to measure its distance from being regular Smith and Van den Bergh considered the
free part of the modules F e

∗ (R) and its asymptotic behavior when e grows. Later, Huneke
and Leuschke reprised this idea and de�ned a new numerical invariant called F-signature.

De�nition 9.1. Let (R,m) be a local ring and M a �nitely generated R-module. The free
rank ofM is the unique integer frkR(M) > 0 such thatM admits a direct sum decomposition

M = R⊕ frkR(M) ⊕N,

where the module N has no free direct summands.

The cancellation property of direct sums over local rings guarantees the existence and
the uniqueness of frkRM . In particular, we observe that the fact that N has no free direct
summands is equivalent to requiring that φ(N) 6= R for all φ ∈ HomR(N,R). Moreover, the
free rank ofM can be seen also as the maximum integer n such that there exists a surjection
M � R⊕n. Finally, when the ring R is clear from the context we will omit the subscript
and denote the free rank of M simply as frkM .

De�nition 9.2. Let (R,m, k) be an F-�nite local domain. The F-signature of R is

s(R) = lim
e→∞

frkR (F e
∗ (R))

rankR (F e
∗ (R))

.

As for the Hilbert-Kunz multiplicity, it is not clear from the de�nition that the limit
de�ning the F-signature always exists. The existence of the limit was proved �rst in some
special cases, and then in full generality in 2011 by Tucker.
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Remark 9.3. By Theorem 8.1 we have rankR (F e
∗ (R)) = [F e

∗k : k]pde, where d = dimR. So
one may be tempted to replace the denominator in the limit de�ning the F-signature with
[F e
∗k : k]pde and use this to extend the de�nition of F-signature also to non domains. On the

other hand, we will see in Theorem 9.9 that s(R) = 0 whenever R is not strongly F-regular.
Thus, we will restrict to the domain case from the beginning.

We need some preliminary results on rank and free rank. First, we observe that for any
�nitely generated R-module M we have inequalities:

(1) frkR(M) 6 rankR(M) 6 µR(M),

where µR(M) is the minimal number of generators ofM . Both inequalities become equalities
when M is free and are strict otherwise. In particular, they tell us that the F-signature is a
real number between 0 and 1.

Lemma 9.4. Let (R,m, k) be a local ring.

(1) If M1 and M2 are R-modules, then frkR(M1 ⊕M2) = frkR(M1) + frkR(M2).
(2) If M is an R-module with M ′ ⊆M a submodule and M ′′ = M/M ′, then

frkR(M ′′) 6 frkR(M) 6 frkR(M ′) + µR(M ′′).

Proof. (1) If M1 = R⊕ frk(M1) ⊕N1 and M2 = R⊕ frk(M2) ⊕N2, where N1, N2 do not have free
direct summands, then

M1 ⊕M2 = R⊕(frk(M1)+frk(M2)) ⊕ (N1 ⊕N2).

It remains to show that N1⊕N2 has no free direct summands. This can be done by passing to
the completion R̂ of R and using the KRSA property of complete local rings. Alternatively,
one can reason has follows. If φ ∈ HomR(N1 ⊕ N2, R), then φ(N1), φ(N2) ⊆ m as N1, N2

have no free direct summands. It follows that φ(N1 ⊕ N2) = φ(N1) + φ(N2) ⊆ m as well,
therefore N1 ⊕N2 has no free direct summands.
(2) To prove the �rst inequality, observe that any surjection M ′′ → R⊕n induces another
surjection M → R⊕n by pre-composing with the projection M →M/M ′ = M ′′. This yields
frkR(M ′′) 6 frkR(M). We prove the second inequality. We decompose M ′ and M as follows

M = R⊕n ⊕N and M ′ = R⊕n ⊕N ′,
where the inclusion M ′ ⊆ M is given by equality on R⊕n and an inclusion N ′ ⊆ N , and
φ(N ′) ⊆ m for any φ ∈ HomR(N,R). In other words, n is the maximal rank of a mutual free
direct summand of M and M ′. Now, consider a surjection ψ : N → R⊕ frk(N). Then we have
ψ(N ′) ⊆ mfrk(N). Therefore, ψ induces a surjective map M ′′ = M/M ′ = N/N ′ → kfrk(N) and
hence also M ′′/mM ′′ → kfrk(N), which shows µ(M ′′) > frk(N). Putting everything together,
we obtain frk(M) = frk(R⊕n) + frk(N) = n+ frk(N) 6 frk(M ′) + µ(M ′′). �

Theorem 9.5 (Tucker). Let (R,m, k) be an F-�nite local domain of dimension d. Then the
F-signature of R exists.

Proof. We set ce = frkR(F e∗ (R))
rankR(F e∗ (R))

for any e > 0, and observe that ce ∈ [0, 1] by (1). We reason
as in the proof of Theorem 8.18. By Theorem 8.1 the module F∗(R) is �nitely generated and
torsion-free of rank [F∗k : k]pd = pd+α, where α = logp[F∗k : k]. Therefore, we have short
exact sequences

0→ R⊕p
d+α → F∗(R)→ C1 → 0

54



0→ F∗(R)→ R⊕p
d+α → C2 → 0

with dim(C1), dim(C2) < d. Applying the exact functor F e
∗ (−) to the previous sequences

yields
0→ (F e

∗ (R))⊕p
d+α

→ F e+1
∗ (R)→ F e

∗ (C1)→ 0

and
0→ F e+1

∗ (R)→ (F e
∗ (R))⊕p

d+α

→ F e
∗ (C2)→ 0.

We apply Lemma 9.4 to the previous sequences to get

| frkR
(
F e+1
∗ (R)

)
− frkR (F e

∗ (R)) · pd+α| 6 max{µR(F e
∗ (C1)), µR(F e

∗ (C2))}.
By Corollary 8.11 and Remark 8.4 there exists a constant D > 0 such that µR(F e

∗ (Ci)) 6
DpedimCi [F e

∗k : k] 6 Dp(d+α−1)e. Dividing by p(e+1)(d+α) we obtain |ce+1 − ce| 6 D
pe+1 .

Reasoning as in the proof of of Theorem 8.18, one can show that the sequence {ce}e is a
Cauchy sequence, which implies the existence of the limit lim

e→∞
ce = s(R) ∈ R, i.e., the

F-signature exists. �

9.2. F-signature and strong F-regularity. The goal of this section is to prove that for
F-�nite rings having positive F-signature is equivalent to being strongly F-regular. One
implication is easier and we prove it immediately.

De�nition 9.6. Let (R,m) be local and F-�nite, and letM be a �nitely generated R-module.
For each e > 0, the modules

Ie(M) = {c ∈M | R ·F e∗ c−−→ F e
∗ (M) does not split}

= {c ∈M | ϕ(F e
∗ (c)) ∈ m for every ϕ ∈ HomR(F e

∗ (M), R)}
are called Frobenius non-splitting submodules of M . When M = R we will denote them
simply by Ie = Ie(R).

We prove that Ie(M) is actually a submodule ofM and some of its fundamental properties.

Proposition 9.7. Let R and M be as above, then the following facts hold.

(1) For any e > 0, Ie(M) is a submodule of M and mpeM ⊆ Ie(M).
(2) For any e > 0, frkR(F e

∗ (M)) = `R (M/Ie(M)) [F e
∗k : k].

(3) {Ie(M)}e>0 is a descending chain of submodules of M .

(4) If R is strongly F-regular and M is torsion free, then
⋂
e>0

Ie(M) = {0}.

Proof. (1) Let η1, η2 ∈ Ie(M) and r ∈ R. We prove that rη1 + η2 ∈ Ie(M). This is
equivalent to the condition that there is no splitting ϕ ∈ HomR(F e

∗ (M), R) such that
ϕ(F e

∗ (rη1 + η2)) = 1. Assume by contradiction that such a splitting ϕ exists. This
implies that ϕ(F e

∗ (rη1) + ϕ(η2)) = 1. Since R is local, we must have that either
ϕ(F e

∗ (rη1)) is a unit or ϕ(F e
∗ (η2)) is a unit. In the second case we get directly that

η2 6∈ Ie(M). In the �rst case, since ϕ(F e
∗ (r)−) ∈ HomR(F e

∗ (M), R), we again obtain
that η1 6∈ Ie(M). Either way, we get to the desired contradiction.

(2) We decompose F e
∗ (M) ∼= R⊕ frk(F e∗ (M))⊕N , whereN does not contain freeR-summands.

Then we obtain F e
∗ (Ie(M)) ∼= mfrk(F e∗ (M)) ⊕N . Therefore

`R (M/Ie(M)) = `F e∗ (R) (F e
∗ (M/Ie(M))) =

`R(F e
∗ (M)/F e

∗ (Ie(M)))

[F e
∗k : k]

=
frkR(F e

∗ (M))

[F e
∗k : k]

.
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(3) We want to show that Ie(M) ⊇ Ie+1(M). If Ie(M) = M this is clear, so assume
Ie(M) 6= M . We �x η ∈M \ Ie(M) and we prove that η /∈ Ie+1(M). Since η 6∈ Ie(M)
there exists a splitting ϕ : F e

∗ (M) → R such that ϕ(F e
∗ η) = 1. We observe that R

is F-split. In fact, the multiplication map R
·η−→ M induces F e

∗ (R)
·F e∗ η−−→ F e

∗ (M), and
composing with ϕ we obtain a splitting of F e

∗ (R). In particular, we can choose a

splitting F∗R
ψ−→ such that ψ(F∗(1)) = 1. So we obtain ψ(F∗ϕ(F e+1η)) = 1 which

implies η 6∈ Ie+1(M) as claimed.
(4) Since M is torsion-free and �nitely generated, there exists an injective map into a

�nite free R-moduleM ↪→ R⊕n. We �x a non-zero element η ∈M . By composing the
previous inclusion with an appropriate projection into one of the factors of R⊕n we
obtain a map ϕ : M → R such that ϕ(η) = r 6= 0. Since R is strongly F-regular there
exists an e > 0 and ψ : F e

∗ (R)→ R such that ψ(F e
∗ r) = 1. Therefore ψ(F e

∗ϕ(η)) = 1
which implies that η 6∈ Ie(M).

�

We need the following lemma by Chevalley, for a proof we refer to [MP21, Lemma 10.14].

Lemma 9.8 (Chevalley). Let (R,m, k) be a complete local ring and M a �nitely generated
R-module. Let I ⊆ R be an m-primary ideal and {Mn}n∈N be a descending chain of R-

submodules of M such that
⋂
n∈N

Mn = {0}. Then there exists an n0 ∈ N such that Mn0 ⊆ IM .

Theorem 9.9 (Aberbach�Leuschke). Let (R,m, k) be an F-�nite local ring. Then s(R) > 0
if and only if R is strongly F-regular.

Proof. First we prove that if R is not strongly F-regular, then s(R) = 0. We decompose
F e
∗ (R) ∼= Rae ⊕ Me, where ae = frkR(F e

∗ (R)) and Me does not contain free summands.
By Proposition 9.7 we have that frkR(F e

∗ (R)) = `R (R/Ie(R)) [F e
∗k : k] = `R (F e

∗ (R/Ie(R))).
Since R is not strongly F-regular, there exists an element c ∈ R◦ such that the multiplication
map R

·F e∗ c−−→ F e
∗ (R) does not split for all e > 0. Observe in particular that mF e

∗ (R) +
spanF e∗ (R){F e

∗ c} ⊆ F e
∗ (Ie(R)) for all e > 0. Therefore we obtain

frkR(F e
∗ (R)) = `R (F e

∗ (R)/F e
∗ (Ie(R)))

6 `R
(
F e
∗ (R)/

(
mF e
∗ (R) + spanF e∗ (R){F e

∗ c}
))

= `R (F e
∗ (R/c)⊗R/m)

= [F e
∗k : k] · HKR(m, R/c, e)

where the last equality follows from Remark 8.4. By Corollary 8.11, we have HKR(m, R/c, e) 6
C · p(d−1)e for some C > 0 since dimR/c = d− 1. In particular, dividing by [F e

∗k : k]pde both
sides and taking the limit for e→∞ we obtain that s(R) = 0.
Now we prove the converse. First, observe that we can assume that R is complete, since

strong F-regularity, free rank, and rank are preserved under completion. We claim that
there exists an e0 > 0 such that for all e > 0 we have the inclusion Ie+e0 ⊆ m[pe]. To
prove the claim, we �x e > 0 and r ∈ R r m[pe]. Notice that r ∈ R r m[pe] if and only if
F e
∗ r ∈ F e

∗R \mF e
∗R. For simplicity of notation we set M = F e

∗R in what follows. Since R is
complete and Cohen-Macaulay (by Theorem 5.25), there exists a canonical module ωR. We
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denote by (−)∨ = HomR(−, ωR) the canonical dual. We consider the following short exact
sequence

0→ K → R⊕n →M∨ → 0

where R⊕n is a �nite free R-module. Since M is maximal Cohen-Macaulay, M∨ is also
maximal Cohen-Macaulay by [BH93, Theorem 3.3.10]. Therefore by the Depth Lemma, K
is maximal Cohen-Macaulay as well. We dualize the previous sequence, and use the fact
that (M∨)∨ ∼= M and Ext1

R(N,ωR) = 0 for all MCM R-modules N to obtain a short exact
sequence

0→M
ψ→ ω⊕nR → K∨ → 0.

Now, �x a system of parameters x = x1, . . . , xt of R, which is then a regular sequence for R.
Consider the m-primary ideal I = (x). Since the module TorR1 (R/I,K∨) can be computed
as the �rst Koszul homology module H1(x;K∨), and x is a regular sequence on K∨, we
have that TorR1 (R/I,K∨) = 0, and the previous short exact sequence yields the short exact
sequence

0→M/IM
ψ→ ω⊕nR /Iω⊕nR → K∨/IK∨ → 0.

Consider the Frobenius non-splitting submodules Ie(ωR), by Proposition 9.7
⋂
e>0 Ie(ωR) =

(0). Thus Chevalley's Lemma implies the existence of an index e0 > 0 such that Ie0(ωR) ⊆
IωR. Notice that e0 depends only on R and not on M = F e

∗R. Moreover, observe that
Ie(ω

⊕n
R ) = Ie(ωR)⊕n as a submodule of ω⊕nR . As a consequence of the above containment,

we get that Ie0(ω
⊕n
R ) ⊆ Iω⊕nR . We now claim that ψ(F e

∗ (r)) /∈ Ie0(ω
⊕n
R ). In fact, if this

was not the case, then we would have that ψ(F e
∗ (r)) ∈ Iω⊕nR , and since ψ is injective we

would get that F e
∗ (r) ∈ IM ⊆ mM . A contradiction. It follows that there exists a splitting

ϕ : F e0
∗ ω

⊕n
R → R such that ϕ(F e

∗ r) = 1. By restricting ϕ to F e0
∗ (M) = F e+e0

∗ (R) ⊆ F e0
∗ (ω⊕nR )

we obtain a splitting F e+e0
∗ (R)→ R sending F e+e0

∗ r to 1, which is equivalent to saying that
r ∈ Rr Ie+e0 . This proves the claimed inclusion Ie+e0 ⊆ m[pe].
To conclude the proof, observe that

frkR(F e+e0
∗ R)

rankR(F e+e0
∗ R)

=
frkR(F e+e0

∗ R)

[F e+e0
∗ k : k]p(e+e0)d

=
1

p(e+e0)d
`R (R/Ie+e0)

>
1

p(e+e0)d
`R
(
R/m[pe]

)
=

1

p(e+e0)d
HKR(m, e).

Therefore, taking the limit for e→∞ we obtain s(R) > 1
pe0d

> 0 as desired. �

Thanks to the previous theorem, when looking for examples of F-signature we should
restrict to strongly F-regular rings. However, computing explicit examples of F-signature is
a di�cult task, and only few cases are known. Rings of invariants of Examples 3.10 and 5.27
are among them.

Example 9.10. Let S = kJx1, . . . , xdK be a power series ring over an algebraically closed
�eld of characteristic p > 0 and let G ⊆ GL(d, k) be a �nite group acting linearly on S
such that p - |G|. We denote by R = SG the corresponding invariant ring. We assume
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further that G does not contain pseudore�ections2. This is not really restrictive. In fact, by
Chevalley�Shephard�Todd Theorem if G is generated by pseudore�ections then SG is again
a regular local ring. In this setting, using the Auslander correspondence one can convert the
computation of the free rank of F e

∗ (R) into an analogous problem in representation theory
of the group G over k. More precisely, frkR (F e

∗ (R))) is equal to the number of copies of the
trivial representation of G appearing into the Frobenius twist representation F e

∗ (S/m
[pe]),

where m = (x1, . . . , xd). Then, using techniques from representation theory of �nite groups,
one obtains

s(R) =
1

|G|
.

Even more, one can prove that frkR (F e
∗ (R))) is a quasi-polynomial in pe of degree d, leading

coe�cient 1
|G| , and "second coe�cient" equal to 0.

9.3. F-signature and regularity. The goal of this section is to prove that for an F-�nite
ring R we have s(R) = 1 if and only if R is regular. The approach we will use is the one
given by Polstra and Smirnov in [PS19]. One implication follows immediately from Kunz's
Theorem. In fact, if R is regular then by Theorem 8.6 F e

∗ (R) is free for all e > 0, thus
frkR F

e
∗ (R) = rankR F

e
∗ (R) for all e > 0, and consequently s(R) = 1.

In order to prove that s(R) = 1 implies that R is regular, we will need some preparatory
results. We observe that s(R) = 1 implies in particular that R is strongly F-regular by
Theorem 9.9, thus we will assume that R is strongly F-regular throughout the rest of the
section.

Notation 9.11. Let N ⊆ M be �nitely generated R-modules. We denote by N -rk(M) the
maximal number of N -direct summands appearing in all possible direct sum decomposition
of M .

Lemma 9.12. Let (R,m) be an F-�nite and strongly F-regular local ring. Suppose M is a
�nitely generated R-module such that M-rk(F e0

∗ (R)) > 0 for some e0 > 0. Then

lim inf
e→∞

M- rk(F e
∗ (R))

rankR(F e
∗ (R))

> 0.

Proof. Suppose that F e0
∗ (R) ∼= M⊕N . For any e > 0, decompose F e

∗ (R) ∼= R⊕ae⊕Me where
ae = frkR(F e

∗ (R)) and Me does not contain free R-summands. Then we have F e+e0
∗ (R) ∼=

F e0
∗ (R)⊕ae ⊕ F e0

∗ (Me), and thus M⊕ae is a direct summand of F e+e0
∗ (R). Therefore we have

M -rk(F e+e0(R)) > ae, and therefore

lim inf
e→∞

M - rk(F e
∗ (R))

rankR(F e
∗ (R))

> lim inf
e→∞

frkR(F e−e0
∗ (R))

rankR(F e
∗ (R))

=
s(R)

rankR(F e0
∗ (R))

> 0.

�

Proposition 9.13. Let (R,m, k) be an F-�nite and strongly F-regular local ring and let
P ⊆ R be a prime ideal. Then the following facts are equivalent:

(1) frkR(F e
∗ (R)) = frkRP (F e

∗ (RP )) for all e > 0;
(2) s(R) = s(RP ).

2An element σ ∈ GL(d, k) of �nite order is called pseudore�ection if the �xed subspace {v ∈ kd : σ(v) = v}
has dimension d− 1. Equivalently, σ has eigenvalue 1 with multiplicity d− 1.
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Proof. If frkR(F e
∗ (R)) = frkRP (F e

∗ (RP )) for all e > 0, then s(R) = s(RP ) since rankR(F e
∗ (R)) =

rankRP (F e
∗ (RP )). We prove that (2)⇒ (1). So we assume that s(R) = s(RP ). The inequality

frkR(F e
∗ (R)) 6 frkRP (F e

∗ (RP )) always holds since a free R-summand localizes to a free RP -
summand. Assume by contradiction that frkR(F e0

∗ (R)) < frkRP (F e0
∗ (RP )) for some e0 > 0.

We write F e0
∗ (R) ∼= R⊕ae0 ⊕Me0 with ae0 = frkR(F e0

∗ (R)). Then (Me0)P must contain a free
RP -summand. For each e > 0, consider a direct sum decomposition of the form

F e
∗ (R) ∼= R⊕ frk(F e∗ (R)) ⊕M⊕Me0 - rk(F e∗ (R))

e0 ⊕Ne

We localize at P and count free summands, we obtain

frkRP (F e
∗ (RP )) > frk(F e

∗ (R)) +Me0- rank(F e
∗ (R)).

This implies

s(RP ) = lim
e→∞

frkRP (F e
∗ (RP ))

rankRP (F e
∗ (RP ))

> lim
e→∞

frkR(F e
∗ (R))

rankR(F e
∗ (R))

+ lim inf
e→∞

Me0- rk(F e
∗ (R))

rankR(F e
∗ (R))

= s(R) + lim inf
e→∞

Me0- rk(F e
∗ (R))

rankR(F e
∗ (R))

.

By Lemma 9.12 we get that s(RP ) > s(R), which gives a contradiction. �

Theorem 9.14. Let (R,m, k) be an F-�nite local ring. Then s(R) = 1 if and only if R is
regular.

Proof. If R is regular, then F e
∗ (R) is free for all e > 0 by Kunz's Theorem 8.6, thus

frkR(F e
∗ (R)) = rankR(F e

∗ (R)) which implies s(R) = 1. We prove the other implication.
Assume s(R) = 1, then by Theorem 9.9 R is strongly F-regular, in particular it is a domain.
Consider the localization of R at the prime ideal (0) and observe that R(0) = Q is a �eld,
hence a regular ring. So we have s(Q) = 1 = s(R). By Proposition 9.13, we obtain

frkR(F e
∗ (R)) = frkQ(F e

∗ (Q)) = dimQ(F e
∗ (Q)) = rankR(F e

∗ (R))

for all e > 0. So R is regular by Kunz's Theorem. �

10. Applications

In this �nal section we present some applications of the F-singularities we have discussed.

10.1. Uniform containments between symbolic and ordinary powers.

De�nition 10.1. Let R be a ring, and I ( R be a radical ideal. The n-th symbolic power
of I is de�ned as

I(n) = InRW ∩R,
where W = Rr

⋃
P∈Min(I) P .

Examples. (1) Let R = k[x, y, z], and I = (xy, xz, yz). Then I(2) = (x, y)2 ∩ (x, z)2 ∩
(y, z)2. Observe that xyz ∈ I(2) r I2.

(2) Let R = k[x, y, z]/(x2 − yz), and Q = (x, y). Then Q(2) = (y).
(3) Let R = Fp[x1, x2, x3, x4], and Q be the kernel of the Fp-algebra homomorphism from

R to Fp that sends x1 7→ tp
2
, x2 7→ tp(p+1), x3 7→ tp

2+p+1 and x4 7→ t(p+1)2 . Then
f = xp+1

1 x2 − xp+1
2 − x1x

p
3 + xp4 ∈ Q(2) rQ2.
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Let us start with some properties of symbolic powers that are well-known and easy to
prove. They are here stated for prime ideals, but hold more generally.

Properties 10.2. Let R be a ring, and Q ∈ Spec(R). Then

(1) Qn ⊆ Q(n) for all n ∈ N.
(2) Q(n)Q(m) ⊆ Q(n+m) for all m,n ∈ N. In particular, (Q(m))n ⊆ Q(mn).
(3) Q(m) ⊆ Q(n) for all m > n.

Question (Q1). Given n ∈ N, is it true that Q(k) ⊆ Qn for k � 0? Since Qk ⊆ Q(k) always
holds, in this case {Qn} and {Q(n)} describe the same topology (we write {Qn} ∼ {Q(n)}).

It turns out that the answer is a�rmative for regular rings.

Theorem (Swanson). In the notation and setup considered above, if {Qn} ∼ {Q(n)}, then
there exists h (possibly depending on Q) such that Q(hn) ⊆ Qn for all n.

Theorem 10.3 (Ein-Lazarsfeld-Smith, Hochster-Huneke). Let R be a regular ring containing
a �eld, and Q ∈ Spec(R) be a prime ideal. Let h = max{1, ht(Q)}. Then Q(hn) ⊆ Qn for
all integers n ∈ N. In particular, if R has �nite Krull dimension d, and we let H =
max{1, d− 1}, then Q(Hn) ⊆ Qn for all n ∈ N and all Q ∈ Spec(R).

Before proving the theorem, we need two basic lemmas.

Lemma 10.4. Let R be a commutative Noetherian ring, and I, J be two ideals. Then J ⊆ I
if and only if Jp ⊆ Ip for all p ∈ AssR(R/I).

Proof. The �only if� direction is trivial. For the converse, assume that Jp ⊆ Ip for all
p ∈ AssR(R/I), and let x ∈ J . Consider the ideal I :R x, and the injection

0 //
R

(I :R x)
// R/I

that we have already discussed in previous sections. Because of this, we have that AssR(R/I :R
x) ⊆ AssR(R/I). Let Q ∈ AssR(R/I :R x), and observe that (I :R x)Q ∼= IQ :RQ x = RQ,
since Q ∈ AssR(R/I) and x ∈ JQ ⊆ IQ by assumption. It follows that (R/I :R x)Q = 0,
which contradicts the fact that Q ∈ AssR(R/I :R x) ⊆ SuppR(R/I :R x). �

Lemma 10.5. Let R be a regular ring of prime characteristic p > 0, and Q ∈ Spec(R).
Then AssR(R/Q[p]) = {Q}.

Proof. Since
√
Q[p] = Q, it is clear that Q ∈ Min(Q[p]) ⊆ AssR(R/Q[p]). For the converse,

let P ∈ AssR(R/Q[p]), so that we can write P = Q[p] :R α for some α ∈ R. It is clear
that Q ⊆ P . For the converse, let r ∈ P . Since αr ∈ Q[p], a fortiori we have αrp ∈ Q[p].
Equivalently, α ∈ Q[p] :R rp = (Q :R r)[p], where the last containment follows from the
�atness of Frobenius, Theorem 2.7. If r /∈ Q, then Q :R r = Q, because Q is a prime. It
follows that α ∈ Q[p], hence P = Q[p] :R α = R, a contradiction. Therefore r ∈ Q, and the
proof is complete �

We are now ready to prove Theorem 10.3. The generality in which we present it here, as
well as its proof, is due to Hochster and Huneke.

60



Proof of Theorem 10.3. We only show the theorem for the prime characteristic p > 0 case.
The equal characteristic 0 case is done by reduction to positive characteristic.
For the second claim, observe that if ht(Q) = d, then Q is maximal. Then Q(Hn) = QHn ⊆

Qn for all n. If ht(Q) 6 d− 1, then H > h = max{1, ht(Q)}, and the claim follows from the
�rst part.
For the �rst part, �rst assume that ht(Q) = 0. Since R ∼= R1 × . . . × Rt is a product of

regular domains, Q must be of the form R1 × . . . × 0 × . . . × Rt. Then, as h = 1, we have
Q(hn) = Q = Qn, and the claim is proved. Now assume that ht(Q) > 0, so that h = ht(Q).
We start by proving a stronger statement for special values of n, namely, powers of p.

Claim. For all q = pe, we have Q(qh) ⊆ Q[q].

Proof of the Claim. Fix q = pe. By Lemma 10.4, in order to show the containment we can
localize at the associated primes of Q[q]. By Lemma 10.5, we have AssR(R/Q[q]) = {Q}.
Therefore we can show the containment by checking that it holds after localizing at Q.
However, Q(hq)RQ = (QRQ)hq, and since RQ is regular, its maximal ideal QRQ is generated
by dim(RQ) = ht(Q) elements, say x1, . . . , xh. But an element in (QRQ)hq can be written
as
∑
rix

i1
1 · · ·x

ih
h , where |i| = i1 + . . .+ ih > qh. By the pigeonhole principle, we must have

ij > q for some j, otherwise |i| < hq. But then (QRQ)qh ⊆ (QRQ)[q], and the claim is
proved. �

Since Q[q] ⊆ Qq, the theorem is proved for all n = pe. For the other values, �x n ∈ N. For
q = pe > n, write q = aen+ r, with 0 6 r < n. We have(

Q(hn)
)[q] ⊆

(
Q(hn)

)aen+r ⊆
(
Q(hn)

)aen ⊆ (Q(haen)
)n
.

Choose 0 6= c ∈ Qhn2
. Observe that c is independent of e. We have

c
(
Q(hn)

)[q] ⊆ Qhn2 ·
(
Q(haen)

)n ⊆ (Q(hr)Q(haen)
)n ⊆ (Qh(aen+r)

)n
=
(
Q(hq)

)n ⊆ (Q[q]
)n

= (Qn)[q] .

Since the containment holds for all q = pe � 0, we have Q(hn) ⊆ (Qn)∗ = Qn, because
regular rings are weakly F-regular by Theorem 2.10. �

10.2. Direct summands of regular rings are Cohen-Macaulay. Let ϕ : R ↪→ S be a
ring inclusion. We say that the inclusion is split (or that R is a direct summand of S) if
there exists an R-module map ψ : S → R such that ψ ◦ ϕ = idR.

Theorem 10.6 (Hochster-Roberts / Hochster-Huneke / Heitmann-Ma). Let R be a direct
summand of a regular ring S. Then R is Cohen-Macaulay.

When (R,m) is local, we can always reduce to the case when S (hence R) is a domain, as
a consequence of the following lemma.

Lemma 10.7. Let (R,m) be a direct summand of a ring S ∼= S1 × . . . × St. Then R is a
direct summand of Si for some i.

Proof. Let ψ : S → R be the splitting, and let e1, . . . , et be the idempotents in S that
correspond to 1S1 , . . . , 1St inside S. Then

1 = ψ(1) = ψ(e1 + . . .+ et) = ψ(e1) + . . .+ ψ(et).
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Since R is local, there exists i such that ψ(ei) is a unit in R. Consider the natural inclusion
and projection Si

ι−→ S
π−→ Si. Then ϕi = πϕ makes R into a subring of Si. We then have

R
ϕi
// Si

ι
// S

ψ
// R

·ψ(ei)
−1

// R

1 // 1Si
// ei // ψ(ei) // 1

so that ·(ψ(ei))
−1ψ ◦ ι : Si → R gives the desired splitting of ϕi. �

Since regular rings are products of �nitely many regular domains, Lemma 10.7 allows
indeed to reduce from the case when (R,m) is a direct summand of a regular ring, to the
case when (R,m) is a direct summand of a regular domain.

Remark 10.8. Observe that, if (R,m) is a complete local ring that is a direct summand of a
regular ring S, then putting together Lemma 10.7, Proposition 3.9, and Theorem 3.7, we get
that R is Cohen-Macaulay. This proves Theorem 10.6 in the case when (R,m) is complete
local.

To prove Theorem 10.6 in its full generality, we need to reduce to the case when (R,m) is
complete local. Let ϕ : R ↪→ S be a split ring map, with S regular. Let m ∈ Max(R), and
let W = ϕ(Rrm). Then ϕ induces an inclusion Rm → SW . Moreover, the original splitting
ψ : S → R induces a map ψ : SW → Rm, that still splits the inclusion Rm ⊆ SW . Since
localization of a regular ring is regular, and a ring is Cohen-Macaulay if and only if every
localization at a maximal ideal is, we may henceforth assume that (R,m) is local, and it is
a direct summand of a regular ring S.

Proposition 10.9. Let ϕ : (R,m) → S be a pure map, and assume that S = SW where

W = ϕ(R r m). Then R̂ → Ŝ is pure, where Ŝ is the completion of S at the ideal mS.

Moreover, if S is regular, so is Ŝ.

Proof. First, observe that S → Ŝ is faithfully �at (it is �at, and maximal ideals in Ŝ are
maximal ideals of S that contain mS. Since S = SW by assumption, these are all the maximal
ideals of S, so the map Spec(Ŝ) → Spec(S) is surjective; these two conditions give faithful
�atness). Then R→ Ŝ is pure. Tensoring with E, we then have an injection E ↪→ Ŝ ⊗R E,
and since E = ER̂(k), we have R̂ ⊗R̂ ER̂(k) ↪→ Ŝ ⊗R̂ ER̂(k). By Proposition 7.4, this gives
that R̂→ Ŝ is pure.
For the second claim, we note that the completion of Ŝ at a maximal ideal Q is isomorphic

to the completion of SQ at the ideal QSQ, hence regular. It follows that Ŝ is regular at every
maximal ideal, hence regular. �

Lemma 10.10. Let ϕ : (R,m)→ S ∼= S1× . . .× St be a pure ring map. There exists i such
that (R,m)→ Si is pure.

Proof. By assumption, the image of 1 under ϕE is not zero in S ⊗R E ∼=
⊕

(Si ⊗R E).
Therefore, the image u ∈ E of 1 ∈ k is not zero in Si ⊗ E for some i, and thus R → Si is
pure by Proposition 7.4. �

We are now ready to prove Theorem 10.6 in full generality.
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Proof of Theorem 10.6. Assume that R is a direct summand of a regular ring S. First, we
can localize at m and W = ϕ(Rrm), and complete by Proposition 10.9. By Lemma 10.10,
since regular rings are products of regular domains, we may assume that (R,m) → S is a
pure map, with S a regular domain and R complete local. Remark 10.8 now applies, and
concludes the proof. �

10.3. Direct Summand Conjecture (Theorem) in characteristic p. Let (R,m) be a
complete regular local ring, and let ι : R ⊆ S be a �nite extension. Then R is a direct
summand of R, that is, there exists ψ ∈ HomR(S,R) such that ψι = idR.

Remark 10.11. Let P ∈ Min(R), such that P ∩R = 0. Observe that R ⊆ S/P is still a �nite
extension, and if R is a direct summand of S/P , then S → S/P → R gives a splitting of
R ⊆ S.

Theorem 10.12. Let R ⊆ S be a �nite extension of integral domains. For all ideals I ⊆ R
we have IS ∩R ⊆ I∗.

Proof. Let W = R◦. Since RW is a �eld, the inclusion RW ⊆ SW splits. Therefore, there
exists a map ϕ ∈ HomRW (SW , RW ) which splits the inclusion. Since S is a �nite R-module,
by Remark 5.23 there exists an R-linear map ψ : S → R and c ∈ R◦ such that ψ(1) = c 6= 0.
Let x ∈ I, so that x ∈ IS ∩ R. Raising to the power q, this gives xq ∈ I [q]S. Applying the
map ψ, this gives ψ(xq) = xqψ(1) = cxq ∈ ψ(I [q]S) ⊆ I [q]. As this happens for all q, and
c ∈ R◦, we have that x ∈ I∗. �

Remark 10.13. We have seen in Corollary 5.5 that being F-pure and being F-split are equiv-
alent for F-�nite rings. Using the same principle (with the same proof), one can show that
a �nite map ϕ : R→ S is split if and only if it is pure.

Theorem 10.14. Let R be a regular ring, and let ϕ : R ↪→ S be a �nite ring extension.
Then R is a direct summand of S.

Proof. First we reduce to the case in which R is local. Observe that ϕ : R→ S is split if and
only if the natural map HomR(S,R) → HomR(R,R) is surjective (arguing as above). This
map is surjective if and only if this is true after localizing at every maximal ideal m. In turn,
since S is a �nitely generated R-module, this is equivalent to the map HomRm(SW , Rm) →
HomRm(Rm, Rm), where W = ϕ(R r m), being surjective for all m ∈ Max(R). Finally, this
is equivalent to the map Rm → SW being split for all m ∈ Max(R), and W as above. Thus,
we reduced to the case when R is local. Let x1, . . . , xd be a full system of parameters, and
for t > 0 let It = (xt1, . . . , x

t
d). Since R is regular, hence Gorenstein, R is approximately

Gorenstein with respect to the family {It}. By Remark 10.13, it su�ces to show that
ϕ : (R,m)→ S is pure, and by Proposition 7.4 this is equivalent to ϕt : R/It → S/ItS being
injective. By Theorem 10.12 we have ItS ∩ R ⊆ I∗t = It, since R is regular hence weakly
F-regular. But this exactly says that the map R/It → S/ItS is injective for every t > 0, as
desired. �

10.4. Regular local rings of characteristic p > 0 are UFDs. Of course, this is true
regardless of the characteristic, but thanks to the �atness of the Frobenius map there is an
alternative proof in characteristic p > 0.

Theorem 10.15. Let (R,m) be a regular local ring of characteristic p > 0. Then R is a
UFD.
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Proof. We may assume that d = dim(R) > 2, otherwise the claim is trivial since R is either
a �eld or a DVR. Since R is regular, it is normal (R1 and S2). Therefore R is a UFD if and
only if every height one prime is principal. Let P be a prime of height one. For all q = pe,
we claim that P [q] = P (q). Clearly we have P [q] ⊆ P q ⊆ P (q) = (PRP )q ∩R = (PRP )[q] ∩R,
where the last equality follows from the fact that RP is a DVR, hence PRP is principal.
By Lemmas 10.4 and 10.5, since the only associated prime of P [q] is P we can check the
equality after localizing at P , and locally we have P [q]RP = ((PRP )[q] ∩R)RP . In particular
we obtain that P [q] = P q. If P = (f1, . . . , ft), then it follows that µ(P q) 6 t. This implies
that the �ber cone F(P ) =

⊕
n>0 P

n/mP n has Krull dimension one (this dimension is called
the analytic spread of P ). If we let k = R/m, we can then �nd an element x ∈ P and a
Noether normalization k[x] ⊆ F(P ). Since this map is �nite, there exists N > 1 such that
PN+r = xrPN for all r > 1. In particular, (x) and P have the same integral closure. Since
R is normal, principal ideals are integrally closed, and therefore P = P = (x). �
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